

1. INTRODUCTION

This report will explore the complete analysis and redesign of a retractable nose landing gear to ensure complete feasibility of manufacture and automated assembly. Calculations were carried out for both static and dynamic states, with the aid of Finite Element Analysis of the main loaded components, the quality of the design was evaluated and any points of failure were highlighted. The redesigning of any failing components was carried out to provide a suitable degree of safety. DFA was then carried out by the means of Lucas analysis in which key indices such as handling, fitting and manufacturing cost were used as an assessment criterion for the functionality of the design. From this, the appropriate changes were made, involving a substantial

reduction in the number of components, providing an easier assembly process. A second analysis was done as a means of confirming that the redesign was successful. It should be noted that during the redesign process there was a significant increase in the quantity of locating features to allow for complete automated assembly.

2. DESIGN FOR SUSTAINABILITY: ANALYSIS

2.1. Analysis: Critical Calculations - Calculations are required to analyse the forces acting on the main strut (shown in figure 2). The main strut is a critical component subjected to the most stress. The following assumptions were made:

- The strut is modelled as a homogenous, simple beam (material: Aluminium 2024, T3).
- The forces are assumed to act on the centre of the beam (the neutral axis).
- Rolling friction at the pivot has been ignored.
- At the instant of initial retraction, it is assumed that the FACTUATOR is at its maximum.
- The up/down actuator force is considered negligible, as the actuator piston is fully retracted.
- Worst case scenario was taken: full weight of aircraft acts through nose landing gear.

2.2. Main Strut Stress Analysis (Flexure Formula) - An analysis of the net moment was calculated, refer to figure 2(b), as follows:

$$(Eqn 1) \sum M = (W_{STRUT})(D_{P,STRUT}) - (F_{LINK})(D_{P,LINK}) + (W_{WHEEL})(D_{P,WHEEL})$$
$$(Using Eqn 1) \sum M = (-264)(0.36) + (1260)(0.43) + (543)(0.72) = 837.7 Nm$$

Where W_{STRUT} = weight of the strut (N), W_{WHEEL} = weight of the wheel and fork (N), F_{LINK} =force caused by the actuator at the link (N), $D_{P,\text{WHEEL}}$ = distance from pivot to the wheel (m), $D_{P,\text{LINK}}$ = distance from pivot to link and finally (m), $D_{P,\text{STRUT}}$ = distance to midpoint of the strut (m).

$$(Eqn 2) I_x = \frac{bh^3}{12} \qquad (Using Eqn 2) I_x = \frac{(0.72)(0.11)^3}{12} = 7.986 \times 10^{-5} m^4$$

$$(Eqn 3) \sigma_x = \frac{My}{I} \qquad (Using Eqn 3) \sigma_x = \frac{(837.7)(0.055)}{(7.986 \times 10^{-5})} = 0.577 MPa$$

Where Ix = Second moment of area for rectangle cross-section (m4), b = length of beam (m), h = diameter of beam (m⁴), $\sigma_x =$ stress (MPa), M = net moment (Nm), y = radius (m).

Comment: The flexure formula shows a high stress at the point of the actuator interface, this can be reduced by increasing the thickness of the beam.

2.3. Impact Load & Torsion

$(Eqn 4) F_I = \sim 2.5 F_{AIRCRAFT} [1]$	(Using Eqn 4) $F_1 = \sim 2.5 \times 14715 = 36787.5 N$
$(Eqn 5) \tau = \frac{Tr}{I}$	$(Using Eqn 5) \tau = \frac{(15.2)(0.055)}{(1.44 \times 10^{-5})} = 0.058 MPa$

Comment: The impact load is 36787.5 N, therefore the specification for the strut and the shock absorber will be able to withstand the impact load.

2.4. Maximum Deflection

$$(Eqn \ 6) \ \delta_{max} = \frac{P \cdot a^2}{6 \cdot E \cdot I} \cdot (3l - a) \ [1] \qquad \qquad \delta = \frac{(453)(0.616)^2(3 \times 0.72 - 0.616)}{(6)(74.6 \times 10^9)(7.986 \times 10^{-5})} = 7.42 \times 10^{-6} \ m^{-6}$$

Comment: The maximum deflection at the beam is minimal, therefore the strut design required minimal alterations. However, reduction in weight, and change in shape of the shock strut may increase the deflection value.

2.5. Finite Element Analysis -Finite element analysis was conducted on the initial design. The material for the strut and the wheel fork is 2024-T3 Aluminium Alloy. This is a common material in aircraft structures, it is desired due to its high fatigue strength and low density. The values of the stress on the FEA simulations, may not be accurate, due to a simple mesh.

2.5.1. Wheel Bracket Analysis - The wheel bracket FEA displays high stresses (32.0 MPa) originating at the corners, and decreases along the sides, until it reaches the axle support. It is evident that the lowest stresses are at the fixed point and at the edge axle connection. The factor of safety (10.8) is much larger than required (1.5 - 2.5 meets the requirement for aircraft design [2]), therefore, to reduce the cost of manufacture and mass of component, the wheel bracket material and shape is revised for a lower factor of safety. A maximum deflection of 0.141 mm was computed.

2.5.2. Shock Strut Analysis - The strut FEA displays highest stress, of 12.2 MPa, at the centre of the beam, when the aircraft is stationary, due to the load from the weight of the aircraft. This stress can be mitigated by increasing the thickness of the hollow shaft. During retraction, in flight, the only force applied is the actuator force, which causes a maximum stress of 5.35 MPa at the interface of the actuator and the shock strut. The factor of safety exceeds the recommended, and will be reduced by changing material, and design change to reduce stress concentrations.

2.6. Evaluation: Stress Calculations and FEA Simulation

Stress on Strut:	Calculated = 0.577 MPa	FE
Deflection on Strut:	Calculated = 0.00742 mm	FE

FEA = 12.2 MPa FEA = 0.06 mm

The values of the calculated stress on the strut and FEA simulation show significant discrepancies. The FEA simulation was conducted under a simple mesh, which only considered the forces applied and the geometry of the strut. Similarly, the limitations in the hand calculations, include simplification of the geometry, as a beam. The deflection is greater in the FEA simulation, by a factor of approximately 8, this is because the deflection calculation was made at a point (average of the three-point load). Therefore, the FEA value for the deflection will be closer to the true deflection. The peak stresses in the shock strut is caused by the thin walls, this stress will be mitigated by increasing the thickness, changing the interface with the actuator and the assembly of the landing gear.

3. DESIGN FOR SUITABILITY: ANALYSIS

3.1. Factor of Safety Analysis & Stress Mitigation - The factor of safety for the strut and the wheel bracket, 28.7 and 10.8 respectively, exceeds the recommended aircraft safety factor of 1.5 to 2.5 [2]. A lower factor safety was achieved by changing the material in correspondence to a lower yield strength. Hence, reducing material and manufacturing cost. Which results in a decrease of the stress propagation on dynamic components. Sharp edges will be chamfered, and complex contours will be avoided. Ribs and gussets may be implemented at the edges and at strut support, to reduce deflection and stress. However, a trade-off between manufacturability, cost and stress mitigation must be considered.

3.2. Revised Design - Finite Element Analysis - The material has been changed to 1350 Aluminium Alloy, a cost-effective and lightweight material, which provides a factor of safety used in aerospace industry [3]. The FEA shows that the high stresses have been reduced significantly from the previous design. The revised shock strut design, had a maximum stress of 2.42 MPa, compared to the previous 12.2 MPa (80.1% reduction), and a new factor of safety of 2.1. The revised wheel bracket design has a maximum stress of 18.6 MPa, and the yield strength of the wheel is 27.5 MPa (1350 Aluminium Alloy). The maximum stress has decreased by 41.9%. The wheel bracket has a safety factor of 1.5. The yield strength of the wheel is 27.5 MPa (1350 Aluminium Alloy), however maximum fatigue shown on the wheel bracket is 18.6 MPa, therefore failure is minimised.

3.3. Strategy for Redesign

3.3.1. Wheel Bracket – The wheel bracket has been merged with the piston of the shock absorber. This reduces the number of components, as well as the stresses applied at the curved surfaces, via dissipating the force over a larger area. Ribs have also been implemented to provide structural support at the locations of failure.

3.3.2. Shock Strut – This structure has been redesigned to reduce stress concentrations by changing from a three-component strut (upper strut, lower strut and shock absorber) to a two-component strut (strut and shock-absorber), figure 6. The FEA analysis showed a large

deformation on the strut, due to the actuation force during impact. The thickness of the strut was increased, to withstand the impact load. The strut length had also been increased to hold a larger shock-absorber to account for a safety factor of 1.5. Finally, stress concentrations on the strut had been reduced by introducing chamfers and fillets at sharp edges. Although, this increases the cost of manufacturing, the landing gear is safer for use.

3.3.3. Chassis - The mass of the chassis (figure 7) was reduced significantly from, 151.6 kg to 82.3 kg (2024 T3 Aluminium Alloy), without compromising its function, therefore reducing the cost significantly. The new design also allows for a complete retraction of the strut (by an angle of 90°), by increasing the width and reducing the length of the landing gear, therefore making the design more compact. The original design did not consider assembly, it was not possible to interface the actuators and links. Hence, the chassis can now be disassembled easily, and manufactured more efficiently.

3.4. Conclusion: Design changes for Sustainability & Failure Analysis

The design has been revised for sustainable manufacturing, by reducing the weight of the chassis by 45.7%, in doing so, the required energy over the life-cycle of the chassis decreased, as there are fewer manufacturing processes. The combination of the strut and the wheel bracket reduced the overall stresses at the joint. This increases the power transmission from the steering system, as there are fewer rotating interfaces. A rib structures was implemented at the rounded surface, to prevent failure and minimise deflection. The increase of thickness at the strut has effectively mitigated the stress, as well as provide space for a larger shock absorber. The yield strength of the wheel is 27.5 MPa (1350 Aluminium Alloy), however maximum fatigue shown on the wheel bracket is 18.6 MPa. Similarly, the safety factor for the strut is 2.1, and therefore failure has been minimised.

4. SYSTEMS INTERGRATIONS

4.1. Bought-out Components Interface & Design Choice

Table 2: Interfacing	strategy and	design choice for	bough-out com	oonents

Part No.	Name	Qty	Interface	Design Choice
25	Tire	1	Connected and supported by the wheel	High quality tyre to withstand impact. Tyre width was increased to accommodate increased impact load.
26	Wheel Rim	1	Securely connected to axle & bearing	The wheel is suitable for the selected tyre
29	Brake Disk	1	Securely connected to wheel, via 5 hex bolts.	Hydraulic system to provide reliable and efficient braking. Compact design.
28	Wheel Bearings 1	2	Connected to axle and wheelbase	Ball bearing as this cheap and reduces the rotational friction efficiently. Easy to assemble.
2	Ball bearing 2	2	Located at the joint (near up/down actuator). The link arm has been designed to incorporate the bearing.	Reduces rotational friction during operation of main actuator (retraction). Clip-in bearings for ease of assembly.
4	Main Actuator	1	The actuator is attached to the chassis via heavy-duty bolts, and sleeve bearing for	The electromechanical actuator has been chosen due to its robustness, instant response and it is capability of providing

			rotation. The actuator is connected the link via bolt and minimal-friction-link.	required power for retraction and deployment.
7	Up-Down lock actuator	1	The up and down lock is located within the link mechanism. The clever design allows for one lock to provide the up-lock and the down lock.	The reduction in complexity of the locks, allows for easy assembly – reduces number of parts required.
16	Steering Actuators	2	The steering mechanism consists of two actuators for the left and right movement – connected to the in-house produces strut and triangle structure.	The steering actuators were chosen based on the required torque. The design is compact.
25	HEX Bolt BS EN24014 M6	5	Securely attaches braking system, to wheel	The hex bolt selected to connect the supplied disk assembly
26	HEX Bolt BS EN24014 M6	2	Securely attach the brake callipers to the wheel base.	The hex bolt selected to connect the supplied disk assembly
28	HEX Bolt BS EN24014 M10	3	Allow for connection of torsion links, with minimum rotational friction. Connected to torsion link joint.	The length of the bolt accommodates the required width of the torsion links and the holder. Provides secure attachment to upper and lower torsion link. Easy assembly procedure.
29	M50 HEX Bolt	4	Allows for secure connection of the support links to the main chassis structure.	Heavy-duty bolts for secure connection. Easy to assemble, requires and Allen key.
30	M20 HEX Bolt	1	Allows for secure connection of up and down lock actuators	Reduces rotational friction during operation and requires Allen key for easy assembly.
31	HEX Bolt M16	1	Secures actuator linkage, allows for rotation at the strut.	Secure connection, whilst minimising rotational friction. Easy to assemble, requires and Allen key.
32	HEX Nut (BS EN24014 M10)	2	Connected to torsion link joint.	Provides secure attachment to upper and lower torsion link. Easy assembly procedure.
33	HEX Nut M50	4	Allows for secure connection of the support links to the main chassis structure.	Heavy-duty nuts for secure connection. Easy to assemble, requires and Allen key.
34	HEX Nut M16	1	Secures actuator linkage, allows for rotation at the strut.	Secure connection, whilst minimising rotational friction. Easy to assemble, requires and Allen key.

4.2. Detailed Sub-Assembly Interfacing (including Airframe Fixture)

4.3. Summary of Evaluation of Design:

- All actuators will be run electrically, this provides a higher degree of accuracy than other conventional alternatives, ensuring that the landing gear can remain extending or retracted during mechanical failure.
- The final design allows for the assembly of the power steering, wheel and retraction subsystems prior to fitting to the chassis and strut.
- The final design also allows for fitting to be done using only three unique fasteners with a high tightness of fit, requiring tight and interference fit specifications to keep clearances to a minimum, guaranteeing that all connecting components are fully secured under load.
- The design also includes an extensive number of locating features, allowing for completely automated assembly of all individual sub-systems and complete landing gear.

NOTE: Exploded View of Final Design (incl. Bill of Materials) – see Appendix D **NOTE:** Exploded view of Initial Design (incl. Bill of Materials)- see Appendix C

5. EFFECTIVE USE OF DFA (DESIGN FOR ASSEMBLY)

5.1. Lucas Analysis: Parameters & Justification for Values - *The complete Lucas Analysis table (with every parameter) can be found in the Appendix A*

ITEM NO.	PART NAME	MATERIAL	QTY	ESSENTIAL?	HANDLING INDEX	FITTING INDEX	TOLERANCE	BAND	MANUFACTURING COST INDEX
					Т	T	SURFACE FINISH		Mi
1	LANDING GEAR CHASSIS	Aluminum, 2024, T3	1	0	3.3	8.2	>3.0-5.0	B3	161368.38
2	LOWER L.GEAR LEVER	Aluminum, A201.0, cast, T7	1	0	1.1	7.8	>0.03-0.05	B1	1281.12
3	SHOCK STRUT	Aluminum, 2024, T3	1	1	1.8	5.5	>1.0-3.0	B4	27055.22
4	UPPER L.GEAR LEVER	Aluminum, 2024, T3	1	1	1.8	9.8	>0.03-0.05	B4	9000.79
5	MAIN ACTUATOR CYLINDER	Aluminum, 6463, T4	1	1	1.3	5.6	>0.01-0.03	A1	5680.00
6	MAIN ACTUATOR PISTON	Aluminum, 6463, T4	1	1	1.2	5.6	>0.01-0.03	A1	2021.25
7	MAIN ACTUATOR GRIPPER	Aluminum, 6463, T4	1	1	1.1	3.3	>0.15-0.3	A3	1581.34
8	UP/DOWN-LOCK HOOK	Aluminum, 2024, T3	1	1	1.5	7.7	>0.15-0.3	B3	2019.98
9	UP/DOWN-LOCK CYLINDER	Aluminum, 2024, T3	1	1	2.3	10.4	>0.01-0.03	A2	1944.03
10	UP/DPWN-LOCK PISTON	Aluminum, 2024, T3	1	1	2.4	7.7	>0.01-0.03	A1	898.00
11	BS EN 24014 - M10 x 45 x 26-B	RS COMPONENTS: 418-8104	3	0	2.3	3.2			
12	BS EN 24034 - M10 - N	RS COMPONENTS: 122-4405	4	0	2.3	3.2	-	·	-
13	BS EN 24014 - M10 x 70 x 26-B	RS COMPONENTS: 418-8105	1	0	2.3	3.2	-	.	-
14	BS EN 24014 - M12 x 60 x 30-B	RS COMPONENTS: 508-0994	1	0	2.3	1.7			
15	BS EN 24034 - M12 - N	RS COMPONENTS: 122-4405	1	0	2.3	1.7	-	-	-
16	SHOCK STRUT PISTON	Aluminum, 2024, T3	1	1	2.2	5.5	>0.01-0.03	A2	2836.99
17	SHOCK STRUT CYLINDER	Aluminum, 2024, T3	1	1	1.3	9.7	>0.01-0.03	A1	5843.69
18	STEERING CONNECTOR	Aluminum, 2024, T3	2	1	1.3	6.8	>0.8-1.0	C2	1957.24
19	STEERING ROTATOR	Aluminum, 2024, T3	2	1	1.3	1.8	>0.8-1.0	A2	2379.84
20	UPPER TORQUE LINK	Carbon-fiber-reinforced polymer	1	0	1.1	7.5	>3.0-5.0	B3	308.90
21	LOWER TORQUE LINK	Carbon-fiber-reinforced polymer	1	0	1.1	8.1	>3.0-5.0	B3	314.69
22	POWER STEERING CYLINDER	Aluminum, 2024, T3	2	1	1.3	7.6	>0.01-0.03	AS	2719.97
23	POWER STEERING PISTON	Aluminum, 2024, T3	2	1	1.3	7.0	>0.01-0.03	A1	880.11
24	POWER STEERING SCREW	Cast iron, nodular graphite, EN GJS 800 2	2	0	2.1	3.3	>0.01-0.03	A1	308.44
25	BS EN 24014 M10 x 30 x 26-B	RS COMPONENTS: 122 4405	4	0	2.1	3.2	-	.	-
26	BS EN 24014 - M16 x 100 x 38-N	RS COMPONENTS: 122 4498	1	0	2.1	3.2		.	-
27	BS EN 24034 - M16 - N	RS COMPONENTS: 122 4425	1	0	2.1	3.2	-	-	-
28	TIRE	Aero trainer (AD4D4)	1	1	3.6	3.9	-	-	-
29	WHEEL RIM	Wheel Wright (TI37-1548)	1	1	3	3.9	-	-	-
30	WHEEL BRACKET	Aluminum, 2024, T3	1	0	1.6	2.6	>1.0-3.0	B4	17746.18
31	BRAKE DISC	Tolomatic (0803-1214)	1	1	1.5	10.4		-	-
32	BRAKE CALIPER	Tolomatic (H220SAFCIG)	1	1	1.8	11.1	-	-	-
33	PAD NORMAL	Tolomatic (0803-1214)	2	1	1.8	9.1	-	-	-
34	WHEEL AXLE	AISI Type 316L Stainless steel	1	1	1.8	3.2	>3.0-5.0	A1	1147.24
35	BALL BEARING	RS COMPONENTS: 618-9957	2	0	1.9	4.7		-	
36	BS EN 24014 - M6 x 30 x 18-B	RS COMPONENTS: 520-144	5	0	2.1	1.7	-	-	-
37	BS EN 24014 - M6 x 45 x 18-B	RS COMPONENTS: 520-144	2	0	2.1	1.7			
38	BS EN ISO - 4161 - M20 - N	RS COMPONENTS: 508-1307	2	0	2.1	1.7		-	
39	BS EN 24014 - M16 x 80 x 38-B	RS COMPONENTS: 508-1177	1	0	2.1	1.7			

Table 3: Handling, Fitting and Manufacturing Cost Index

Table 3 shows a bill of materials for the initial landing gear design. The items highlighted in red are bought-out components, the items highlighted in green are in-house manufactured components. The table illustrates the tolerance/surface finish, as well as the criteria band chosen for each component. The main method of primary material processing was determined by the material, all Aluminium components were forged – this is to reduce the capital cost by having various equipment and machines for primary shaping. The cast iron components were sand casted, as this was cost effective and suitable for the components. Table 3 also shows the essential, (1) and non-essential (0) components, in the 5th column. The essential components were critically chosen based on its importance in delivering the function (retracting, steering and locking). Screws, bolts and nuts were classified as non-essentials.

The values chosen for the feeding and fitting indices were taken from the Lucas Scale table [4]. In order to reduce human errors and subjective values, every member of the group (4+), conducted the handling, fitting and manufacturing cost index – reducing skewed/ biased data. Further information on the choice of feeding and fitting values are given in section 5.2.

5.2. Lucas Analysis: Methodology

5.2.1. Design Efficiency - The essential and non-essential values were determined by the component requirements for the functionality of the landing gear. The initial Lucas Analysis showed a very low design efficiency: **20.8%**. This was calculated using equation 7.

 $(Eqn 7) Design Efficiency = \frac{\sum Essential Components}{\sum Essential Components + \sum Non - essential Components} \times 100$

5.2.2. Manual Feeding/Handling Analysis – The manual feeding analysis takes into consideration the size and weight of the part [A], the handling difficulties [B], the orientation of the part [C], the rotational orientation of the part [D]. The handling index is simply given by: Handling Index = A+B+C+D, this is conducted for each component. The feeding ratio of the complete assembly is calculated using equation 8.

(Ean 9) Ecodina Datio -	\sum Feeding Index
$(Eqn \delta)$ recally Kallo =	Essential Components

(Using Eqn 8) Feeding Ratio
$$=\frac{115.4}{25}=4.62$$

Table 4: Example of Manual Feeding Calculation Results

ITEM NO.	PART NAME	MATERIAL	QTY	Α	в	с	D	FEEDING INDEX
1	LANDING GEAR CHASSIS	Aluminum, 2024, T3	1	3	0	0.1	0.2	3.3

5.2.3. Manual Fitting Analysis – The manual fitting analysis considers the part placing and fastening [A], the process direction [B], the insertion type [C], e.g. single, multiple or simultaneous insertion, access/visual to the component [D], alignment [E] and insertion force required [F]. The fitting index is calculated by: Fitting Index = A+B+C+D+E+F. Equation 9, illustrates the calculation for the fitting ratio of the complete assembly.

 $(Eqn 9) Fitting Ratio = \frac{\sum Fitting Index}{Number of Essential Components} \quad (Using Eqn 9) Fitting Ratio = \frac{283.3}{25} = 11.3$

Table 5: Example of Manual Feeding Calculation Results

ITEM NO.	PART NAME	RT NAME MATERIAL		Α	В	с	D	E	F	FITTING INDEX
1	LANDING GEAR CHASSIS	Aluminum, 2024, T3	1	6.0	0.0	0.7	1.5	0.0	0.0	8.2

5.2.4. Manufacturing Cost Index – The manufacturing cost index is calculated using three indices: relative cost (Rc), the processing cost (Pc) and the material cost (Mc). The relative cost is the product of the complexity factor (Cc), the material factor (Cmp), the minimum section factor (Cs) and the tolerance or finish factor (Ct or Cf). The material cost is calculated as the product of volume of the component (V in mm3), the material cost (Cmt) and the waste coefficient (Wc). Hence, it was calculated using: Mi =(Rc*Pc)+Mc. The manufacturing cost index for the full assembly procedure is the summation of the manufacturing indices for each component.

Table 6: Example of Manufacturing Cost Index Calculation Results

ITEM NO.	PART NAME	MATERIAL	SURFACE / TOLERANCE FINISH	BAND	Cc	Cmp	Cs	Ct or Cf	Pc	V (mm3)	Cmt	Wc	Rc	Мс	MANUFACTURIN G INDEX
1	LANDIN G GEAR CHASSIS	Aluminum , 2024, T3	>3.0-5.0	В3	2.2	2	1	1.5	15 1	54997181.8 1	0.0024 3	1.2	6.6	160371.7 8	161368.38

5.3. Lucas Analysis: Key Results – The complete Lucas Analysis table can be found in the Appendix A

Table 7: Tabulated Key Results

Lucas Analysis	N° Components	Design Efficiency	Feeding Ratio	Fitting Ratio	Sum of Manu Cost Index
Initial Design	60	20.8%	4.62	11.3	249293.4

5.4. Evaluation of Lucas Analysis - The chassis, steering components and actuator mechanism have been completed revised, due to the results of the Lucas Analysis. The Lucas Analysis shows a very inefficient design (20.8%). This is due to the large number of screws, bolts and nuts, which increases the complexity of the assembly procedure, evident by the high feeding and fitting ratios. The revised design takes this into account, and reduces the number

of components requiring bolts, screws and nuts. Therefore, reducing the number of nonessential components. The theoretical fitting and feeding ratios should be approximately 1.5 [2][3], however this is unlikely to be achieved in practice. The feeding and fitting ratio of the landing gear were, 4.62 and 11.3 respectively. These were significantly reduced by decreasing the number parts requiring more than one person for manual fitting, designing locating features and symmetrical components. Also, reducing simultaneous multiple insertions, increasing selfholding parts and removing obstructions during assembly (better sub-assembly procedures), all of which can result in optimised fitting and feeding ratios. The manufacturing cost index can be reduced by choosing cheaper manufacturing processes, materials and predominantly weight minimising measures. An example of this was making our chassis smaller, without compromising its function.

6. DFA IMPROVEMENTS

6.1 Design Choice, DFA analysis, Part Reduction and Functionality Analysis

6.2. Exploded View of Final Design (including Bill of Materials)

NOTE: Exploded View of Final Design (incl. Bill of Materials) – see Appendix D **NOTE:** Exploded view of Initial Design (incl. Bill of Materials)- see Appendix C

6.3. Revised Lucas Analysis (Final Design) - Complete Lucas Analysis Appendix B

ITEM NO	DART NAME	MATERIAL	OTV	ESSENTIAL 2	HANDLING INDEX	EITTING INDEX	TOLEBANCE	PAND	MANUEACTURING COST INDEX
TENTINO.	FART NAME	MATERIAL	QIT	ESSENTIAL:	Total	Total	SUPEACE EINISH	DANU	MI
		Stainless steel austenitic AISI 302			Total	Total	SONTACETINISH		
1	BS EN 24034 - M20 - N	HT grade B	4	0	2.0	2.4	-		-
2	BALL BEARING 2	RS COMPONENTS: 618-9963	2		12	3.8			
-	DALL DEALING 2	Cast iron, austempered ductile, ADI	~	ľ	112	0.0			
3	BEARING HOLDER	1050	1	0	1.1	3.7	>0.08-0.15	A1	391.83
		Thomson (HD12B160-							
4	MAIN ACTUATOR	0400CNO1EEM)	1	1	1.3	3.3	-		-
5	UPPER L.GEAR LEVER	Aluminum, 6005, T1	2	1	1.3	4	>1.0-3.0	B3	2660.67
6	CHASSIS (RHS)	ALUMINUM 2024-T3	1	1	1.8	2.2	>5.0-10.0	B4	47379.29
7	UP/DOWN-LOCK ACTUATOR	Thomson (AA22- 05A65M0M0N)	1	1	1.1	4	-	-	-
8	BS EN 24034 - M16 - N	RS COMPONENTS: 276 768	2	0	2.0	3.2	-	-	-
9	BS EN 24034 - M10 - B	RS COMPONENTS: 917 3163	4	0	2.0	3.2	-	-	-
		Cast iron, austempered ductile, ADI							252.52
10	LOCKING PISTON HOLDER	1050	1	1	1.5	2.5	>0.03-0.05	AZ	353.53
11	BS EN 24034 - M50 - B	RS COMPONENTS: 917 3019	1	0	1.6	2.4	-	-	-
12	LOWER L.GEAR LEVER	ALUMINUM 2024-T3	1	1	1.3	1.8	>0.08-0.15	B4	4398.02
13	BS EN 24034 - M20 - B	RS COMPONENTS: 508 1307	2	0	2.0	1.7	-	-	-
14	BS EN 24034 - M16 - B	RS COMPONENTS: 508 1256	2	0	2.0	1.7	-	-	-
15	SHOCK STRUT	Aluminum ALLOY 1350	1	1	1.3	3.3	>1.0-3.0	A3	35876.06
16	STEERING ROTATOR	ALUMINUM 2024-T3	1	1	1.3	4.1	>1.0-3.0	A2	1369.76
17	POWER STEERING SCREW	AISI Type 316L Stainless steel	4	0	2.0	2.5	>0.08-0.15	A1	83.88
18	POWER STEERING ACTUATOR	Thomson (AA42- 21B65M0M0B)	2	1	1.3	1.8	-	-	-
19	STEERING CONNECTOR	AISI Type 316L Stainless steel	2	1	1.3	2.4	>1.0-3.0	C2	1457.42
20	TORSION LINK CONNECTOR	AISI Type 316L Stainless steel	2	1	1.3	1.1	>3.0-5.0	A2	1499.73
		Contras films and a firm of a share of					12050		300.00
21	UPPER TORQUE LINK	Carbon-fiber-reinforced polymer	1	1	1.1	4.8	>3.0-5.0	83	308.90
22	WHEEL BRACKET	Aluminum ALLOY 1350	1	0	1.8	4.1	>0.03-0.05	B4	28184.17
23	LOWER TORQUE LINK	Aluminum ALLOY 1350	1	1	1.1	5.4	>3.0-5.0	B 3	314.69
24	BS EN 24034 - M10 - N	RS COMPONENTS: 122 4405	4	0	2.0	1.7	-	-	-
25	TIRE	Aero trainer (AD4D4)	1	1	2.1	4	-	-	-
26	WHEEL RIM	Wheel Wright (TI37-1548)	1	1	1.5	1.1	-	-	-
27	BRAKE CALIPER	Tolomatic (H220SAFCIG)	1	1	1.3	6.8	-		-
28	BALL BEARING 1	RS COMPONENTS: 618-9957	2	1	1.3	2.6	-	-	-
29	BRAKE DISC	Tolomatic (0803-1214)	1	1	1.5	1.8	-	-	-
20	STRUCT CONNECTOR	Cast iron, austempered ductile, ADI	1	1	1.0	24	>2050	41	1147.24
50	STRUCT CONNECTOR	1050	1		1.0	5.4	-3.0-3.0	~	1147.24
31	BS EN 24034 - M50 - N	RS COMPONENTS: 917 3020	1	0	2.0	1.7	-	-	-
32	CHASSIS (LHS)	Aluminum, 6005, T1	1	1	1.8	1.7	>5.0-10.0	B4	47377.04

Table 8: Handling, Fitting and Manufacturing Cost Index for Final Design

Table 9: DFA Key Results Comparison for the Final Design

Lucas Analysis	N° Components	Design Efficiency	Feeding Ratio	Fitting Ratio	Sum of Manufacturing Cost
Initial Design	60	20.8%	4.62	11.3	249293.4
Final Design	53	47.2%	3.48	5.84	172802.2
Improvement	+11.7%	226.9% increase	+24.7%	+48.3%	+30.7%

6.4. Summary of Findings & Evaluation

The design efficiency was increased by 26.4, from 20.8% to 47.2%, by reducing the number of components requiring fastening processes, therefore minimising the need for screws, bolts and nuts. Additionally, the screws were standardised to reduce variety, decreasing the number of fasteners from 12 unique sizes, to 6. The number of components were reduced by 11.7%, by predominantly merging the non-essential components together (e.g. steering rotator and connector), as well as redesigning components to become self-holding, in nature, such as the up/down-lock actuator. Overall, the design was optimised for manual feeding, by dismembering the large non-manufacturable component, e.g. chassis, into smaller feasible sub-components. This allows for manual assembly to be conducted with ease, through reducing handling difficulties. The fitting ratio was refined by simplifying the insertion processes, from simultaneous, multiple insertions to simple, single insertions. Furthermore, the revised design allows for the assembly of the components to be concentric – easy to align.

The DFA was carried out successfully as the initial analysis indicated that the design efficiency was inadequate (20.8%), and therefore a critical evaluation of the bill of materials was conducted. For example, the fitting and feeding ratio of the chassis was, 8.2 and 3.3 respectively, this was a clear indication that a redesign was required of the chassis. The redesign for the chassis was successful, because the fitting and feeding ration decreased to 1.7 and 1.8 respectively. As a by-product of the chassis design change, the manufacturing cost index substantially reduced, from 161,000 to 47,000. This was accomplished by reducing the volume of the material used and minimising the complexity factor. The initial change in the design of the steering mechanism was a failure, as the CAD assembly showed that the main functionality of the steering mechanism will be inhibited, therefore a different approach of

merging selected components (e.g the two steering rotators), managed to reduce the fitting, feeding and manufacturing indices. It was concluded, that the complete assembly redesign was effective, because the number of successful design alterations (x12) were much greater than the unsuccessful (x1).

7. AUTOMATION OF PRODUCTION

7.1. Sub-assembly procedure of the Main Actuator Link– The automated sub-assembly of the main actuator link of the chassis will be discussed in this section. The assembly in figure 17 is suitable for automation due to the simplicity of the process, whereby the sub-tasks includes hole alignment, bolt/screw tightening and concentric insertion of multiple components. This critical sub-assembly has been chosen for automation, as the main chassis and strut assembly will be referenced from this structure. Table 10 shows the functionality and the interface specification of the 8 parts, which was used to design a suitable assembly line, with feasible sensors and robots for efficient assembly. Economical constraints, production rate and suitability of the robots were considered, as shown on table 11.

Table 10: Parts included in the automated sub-assembly

7.2. Procedure Block diagram

7.3. Assembly Line: Concept design & Initial Configuration

Figure 19: Four concept designs of assembly line configuration on the left.

7.4. Assembly Line: Optimised Configuration

Figure 20: Optimised assembly line configuration using eHub 27.2. The red arrows show the flow of the main subassembly. The blue arrows depict the components being fed from gravity or bowl feeder.

The flow of of the assembly line is described below (letters refer to figure 20):

- **A:** At this location the straight bar enters this section of the subassembly, from a previous manufacturing proves.
- **B:** The straight bar stops directly in front of the Articulate Robot 1. The robot lifts the horizontal piece vertically above the conveyor belt, for insertion of bolts by the SCARA robot, which obtains the bolts from the bowl feeder.
- **C:** The main actuator is fed through from the second conveyor belt (where the actuator was modified for assembly). The gravity feeder supplies the up/down actuator. Both Articulate Robots work on completing the full assembly, between position C and D.

D: The second bowl feeder provides the M16 nuts. The completed part is transported on the conveyor belt to the next workstation for further assembly.

7.5. Optimisation of Assembly Procedure

The initial assembly line configuration, in figure 19, was further improved, as shown in figure 20. The following developments were made:

- Suitability of robot: The initial robots (KUKA KR5_SIXX) were not suitable for this assembly; the articulate robots' limited reach means more robots are required. KUKA KR 240 provides a larger reach, higher payload, at lower costs.
- Reduce total work space: Having a separate table for assembly increases the need for a larger work area, this will increase capital costs. By removing the tables, and conducting the assembly on the conveyor belt, the work space is compact.
- Minimising time of assembly: The time of assembly was reduced by grouping the sub tasks, and working collaboratively, in alternating robots between assembly steps.
- **Minimise number of robots:** The change in robot type and configuration allows for the articulate robot 1 to work collaboratively with the SCARA robot and the Articulate Robot 2.
- Minimise number of steps: The number of steps has been significantly reduced by grouping task between the three robots, instead of the initial 4 robots. The number of components transferred between the robots has been reduced, decreasing the complexity of the assembly.

7.6. Industrial Robot & Suitability after Optimisation
--

	Assembly Line S	Specification					
Assembly Description	The assembly of the main actuator and up above shows the 15 procedural steps req decommissioning.	p/down lock actuator to the straight bar. The block diagram uired for the completion of the assembly, inspection and					
Automation Type	Synchronous transfer systems: the compo motion, to allow for the assembly of that c	onents are transported with an intermittent or discontinuous ertain part.					
Number of Robots	Total = 3 (2 x KUKA KR 240 and 1 x ADE	PT_600TTSCARA)					
	Robot Spec	ification					
Robot Type	ADEPT 600TT SCARA	KUKA KR 240 ARTICULATE [5]					
Mount	Table/riser mounted	Floor mounted					
Mass	41 kg	1267 kg					
End Effector	Single	Tool Changer: switch between 3 tools: large gripper, smaller gripper and sensor					
Payload Analysis	Maximum pay load =5.5 kg Maximum weight of assembly = 24.3 kg	Maximum pay load =240 kg Maximum weight of assembly = 24.3 kg					
Maximum Reach	0.6 m	2.7 m					
Work Volume	0.24 m ²	82.45 m ³					
Capital Cost	£11,800	£9,500					
Evaluation of Suitability	 Synchronous transfer system: This auprocess of assembly can be conducted of tasks, therefore increasing production ra KUKA KR 240: This is suitable for this a therefore able to carry the straight bar (2 be easily accommodated by this versatile articulate robot 1, works in collaboration conveyor belts. The high reach of this ro assembly is conducted with low capital of ADEPT 600TT SCARA: The fast-sustain bolt fittings. The small work volume, ens also provides precision when inserting b 	utomation eliminates the need for a table workstation, the on the conveyor belt. Minimising time of completion of sub- te. assembly due to its large load-bearing capacity (240 kg), e4.3 kg). Any changes to the link mechanism, or chassis, can e robot. The work volume of the robot is high, as the with both SCARA and Articulate Robot 2, in two different bot, reduces the number of robots required, therefore the cost. ned cycle time (0.64 s) reduces delays during alignment and ures there is no contact between the two robots. This robot earings/ or bolts, as well as accurate alignment.					

8. REFERENCES

[1] Shigley, J.E., 2011. Shigley's mechanical engineering design. Tata McGraw-Hill Education.

[2] United States. Army. Air Corps (2005). Structural analysis and design of airplanes. Palm Springs, Ca: Wexford College Press.-Factor of safety value

[3] Parashar, B.N. and Mittal, R.K., 2002. Elements of manufacturing processes. PHI Learning Pvt. Ltd..-Factor of Safety Reference

[4] Swift, K.G. and Booker, J.D., 2003. Process selection: from design to manufacture. Elsevier.-Lucas Reference

[5] K'Nevez, J.Y., Cherif, M., Zapciu, M. and Gérard, A., 2012. Experimental characterization of robot arm rigidity in order to be used in machining operation. arXiv preprint arXiv:1201.4445.

APPENDIX A – Lucas Analysis Detailed Calculation Table

ITEM NO.	PART NAME	MATERIAL	DENSITY	MASS	QTY	ESL	H	HANDL	LINGI	INDEX		-	FITTING	NDEX		TOLERANCE	BAND		R		P		Лc		MANU	FACTURING	COST INDEX
			kg/m3	kg			Α	в	с	D T	A	АВ	C D	E F	т s	SURFACE FINISH		Cc	Cmp	Cs Cto	r Cf	Volume (mm3)	Cmt	Wc	Rc	Mc	Mi
1	LANDING GEAR CHASSIS	Aluminum, 2024, T3	2750	151.24	1	0	3	0 0	0.1 0	0.2 3.3	6.0	0 0.0 0	0.7 1.5	0.0 0.0 8	3.2	>3.0-5.0	B3	2.2	2	1 1	5 15	1 54997181.81	0.00243	1.2	6.6	160371.78	161368.38
2	LOWER L.GEAR LEVER	Aluminum, A201.0, cast, T7	2780	0.58	1	0	1	0 0	0.1	0 📍 1.1	3.3	3 1.6 (0.7 1.5	0.7 0.0 7	8.7	>0.03-0.05	B1	1	2	1 2	4 15	1 208125.66	0.00243	1.1	4.8	556.32	1281.12
3	SHOCK STRUT	Aluminum, 2024, T3	2750	24.20	1	1	1.5	0 0	0.1 0	0.2 📍 1.8	1.0	0 1.6 (0.7 1.5	0.7 0.0 5	5.5	>1.0-3.0	B4	2.3	2	1	15	1 8801790.33	0.00243	1.2	9.2	25666.02	27055.22
4	UPPER L.GEAR LEVER	Aluminum, 2024, T3	2750	6.92	1	1	1.5	0 0	0.1 0	0.2 📍 1.8	6.0	0 1.6 0	0.7 1.5	0.0 0.0 9	9.8	>0.03-0.05	B4	2.3	2	1 2	4 15	1 2515002.36	0.00243	1.2	11.04	7333.75	9000.79
5	MAIN ACTUATOR CYLINDER	Aluminum, 6463, T4	2660	4.81	1	1	1	0 0	0.1 0).2 📍 1.3	3.3	3 0.1 0	0.7 1.5	0.0 0.0 5	5.6	>0.01-0.03	A1	1	2	1 2	8 15	1 1808606.31	0.00243	1.1	5.6	4834.40	5680.00
6	MAIN ACTUATOR PISTON	Aluminum, 6463, T4	2660	1.17	1	1	1 0	0.2 (0	0 📍 1.2	3.3	3 0.1 0	0.7 1.5	0.0 0.0 5	5.6	>0.01-0.03	A1	1	2	1 2	8 15	439822.97	0.00243	1.1	5.6	1175.65	2021.25
7	MAIN ACTUATOR GRIPPER	Aluminum, 6463, T4	2660	0.24	1	1	1	0 0	0.1	0 📍 1.1	1.0	0 0.1 (0.7 1.5	0.0 0.0 3	3.3	>0.15-0.3	A3	2.3	2	1 1	9 15	1 89710.92	0.00243	1.2	8.74	261.60	1581.34
8	UP/DOWN-LOCK HOOK	Aluminum, 2024, T3	2750	0.71	1	1	1	0 0	0.1 0	0.4 📍 1.5	3.3	3 1.6 0	0.7 1.5	0.0 0.6 7	.7	>0.15-0.3	B3	2.2	2	1 1	9 15	1 259816.27	0.00243	1.2	8.36	757.62	2019.98
9	UP/DOWN-LOCK CYLINDER	Aluminum, 2024, T3	2750	0.17	1	1	1.5 0	0.4 (0 0	0.4 📍 2.3	6.0	0 1.6 (0.7 1.5	0.0 0.6 1	0.4	>0.01-0.03	A2	2.1	2	1 2	8 15	62950.92	0.00243	1.1	11.76	168.27	1944.03
10	UP/DPWN-LOCK PISTON	Aluminum, 2024, T3	2750	0.05	1	1	1.5 0	0.4 0	0.1 0).4 📍 2.4	F 3.3	3 1.6 (0.7 1.5	0.0 0.6 7	.7	>0.01-0.03	A1	1	2	1 2	8 15	1 19603.36	0.00243	1.1	5.6	52.40	898.00
11	BS EN 24014 - M10 x 45 x 26-B	RS COMPONENTS: 418-8104	-	-	3	0	1.5 0	0.3 0	0.1 0	0.4 📍 2.3	1.0	0 0.1 (0.0 1.5	0.0 0.6 3	3.2	-	-	-	-	-	· -	-	-	-	-	-	-
12	BS EN 24034 - M10 - N	RS COMPONENTS: 122-4405	-	-	4	0	1.5 0	0.3 0	0.1 0	0.4 📍 2.3	1.0	0 0.1 0	0.0 1.5	0.0 0.6 3	3.2	-	-	-	-	-		-	-	-	-	-	-
13	BS EN 24014 - M10 x 70 x 26-B	RS COMPONENTS: 418-8105	-	-	1	0	1.5 0	0.3 0	0.1 0	0.4 💆 2.3	1.0	0 0.1 0	0.0 1.5	0.0 0.6 3	3.2	-	-	-	-	-		-	-	-	-	-	-
14	BS EN 24014 - M12 x 60 x 30-B	RS COMPONENTS: 508-0994	-	-	1	0	1.5 0	0.3 0	0.1 0	0.4 📍 2.3	1.0	0 0.1 0	0.0 0.0	0.0 0.6 1	.7	-	-	-	-	-		-	-	-	-	-	-
15	BS EN 24034 - M12 - N	RS COMPONENTS: 122-4405	-	-	1	0	1.5 0	0.3 0	0.1 0	0.4 📍 2.3	1.0	0 0.1 (0.0 0.0	0.0 0.6 1	.7	-	-	-	-	-	· -	-	-	-	-	-	-
16	SHOCK STRUT PISTON	Aluminum, 2024, T3	2750	1.09	1	1	1.5 0	0.2 0	0.1 0	0.4 💆 2.2	3.3	3 1.6 (0.0 0.0	0.0 0.6 5	5.5	>0.01-0.03	A2	2.1	2	1 2	8 15	1 397018.77	0.00243	1.1	11.76	1061.23	2836.99
17	SHOCK STRUT CYLINDER	Aluminum, 2024, T3	2750	5.14	1	1	1	0 0	0.1 0	0.2 📍 1.3	6.0	0 1.6 0	0.0 1.5	0.0 0.6 9	9.7	>0.01-0.03	A1	1	2	1 2	8 15	1 1869842.64	0.00243	1.1	5.6	4998.09	5843.69
18	STEERING CONNECTOR	Aluminum, 2024, T3	2750	0.37	2	1	1	0 0	0.1 0	0.2 📍 1.3	6.0	0 0.1 0	0.0 0.0	0.7 0.0 €	5.8	>0.8-1.0	C2	2.2	2	1 2	4 15	1 135683.49	0.00243	1.1	10.56	362.68	1957.24
19	STEERING ROTATOR	Aluminum, 2024, T3	2750	0.88	2	1	1	0 0	0.1 0	0.2 📍 1.3	1.0	0 0.1 (0.0 0.0	0.7 0.0 1	.8	>0.8-1.0	A2	2.1	2	1 2	4 15	1 320898.32	0.00243	1.1	10.08	857.76	2379.84
20	UPPER TORQUE LINK	Carbon-fiber-reinforced polymer	1100	0.11	1	0	1	0 0	0.1	0 📍 1.1	6.0	0 0.1 0	0.7 0.0	0.7 0.0 7	.5	>3.0-5.0	B 3	1.8	1.5	1	10	0 101034.04	0.00035	1.1	2.7	38.90	308.90
21	LOWER TORQUE LINK	Carbon-fiber-reinforced polymer	1100	0.13	1	0	1	0 0	0.1	0 📍 1.1	6.0	0 0.1 0	0.7 0.0	0.7 0.6 8	3.1	>3.0-5.0	B 3	1.8	1.5	1	10	116079.66	0.00035	1.1	2.7	44.69	314.69
22	POWER STEERING CYLINDER	Aluminum, 2024, T3	2750	0.16	2	1	1	0 0	0.1 0	0.2 📍 1.3	6.0	0 1.6 0	0.0 0.0	0.0 0.0 7	.6	>0.01-0.03	A5	з	2	1 2	8 15	1 57983.44	0.00243	1.3	16.8	183.17	2719.97
23	POWER STEERING PISTON	Aluminum, 2024, T3	2750	0.04	2	1	1 0	0.2 0	0.1	0 📍 1.3	3.3	3 1.6 0	0.0 1.5	0.0 0.6 7	0.7	>0.01-0.03	A1	1	2	1 2	8 15	1 12910.53	0.00243	1.1	5.6	34.51	880.11
24	POWER STEERING SCREW	Cast iron, nodular graphite, EN GJS 800 2	2780	0.02	2	0	1.5 0	0.3 0	0.1 0	0.2 📍 2.1	1.0	0 1.6 0	0.7 0.0	0.0 0.0 3	3.3	>0.01-0.03	A1	1	1	1	10	8042.48	0.00105	1	3	8.44	308.44
25	BS EN 24014 M10 x 30 x 26-B	RS COMPONENTS: 122 4405	-	-	4	0	1.5 0	0.3 0	0.1 0	0.2 💆 2.1	1.0	0 1.6 0	0.0 0.0	0.0 0.6 3	3.2	-	-	-	-	-		-	-	-	-	-	-
26	BS EN 24014 - M16 × 100 × 38-N	RS COMPONENTS: 122 4498	-	-	1	0	1.5 0	0.3 0	0.1 0	0.2 📍 2.1	1.0	0 1.6 0	0.0 0.0	0.0 0.6 3	3.2	-	-	-	-	-		-		-	-	-	-
27	BS EN 24034 - M16 - N	RS COMPONENTS: 122 4425	-	-	1	0	1.5 0	0.3 0	0.1 0	0.2 📍 2.1	1.0	0 1.6 0	0.0 0.0	0.0 0.6 3	3.2	-	-	-	-	-		-	-	-	-	-	-
28	TIRE	Aero trainer (AD4D4)	-	-	1	1	3 0	0.6 (0	0 📍 3.6	5 3 .3	з 0.0 (0.0 0.0	0.0 0.6 3	3.9	-	-	-	-	-		-	-	-	-	-	-
29	WHEEL RIM	Wheel Wright (TI37-1548)	-	-	1	1	з	0 0	0	о 🍢 з	3.3	3 0.0 0	0.0 0.0	0.0 0.6 3	3.9	-	-	-	-	-		-	-	-	-	-	-
30	WHEEL BRACKET	Aluminum, 2024, T3	2750	15.43	1	0	1.5	0 0	0.1	0 📍 1.6	5 1.0	0 1.6 0	0.0 0.0	0.0 0.0 2	2.6	>1.0-3.0	B4	2.3	2	1	15	1 5609389.19	0.00243	1.2	9.2	16356.98	17746.18
31	BRAKE DISC	Tolomatic (0803-1214)	-	-	1	1	1.5	0 (0	0 📍 1.5	6.0	0 1.6 0	0.0 1.5	0.7 0.6 1	0.4	-	-	-	-	-		-	-	-	-	-	-
32	BRAKE CALIPER	Tolomatic (H220SAFCIG)	-	-	1	1	1.5	0 0	0.1 0	0.2 📍 1.8	6.0	0 1.6 0	0.7 1.5	0.7 0.6 1	1.1	-	-	-	-	-	- -	-	-	-	-	-	-
33	PAD NORMAL	Tolomatic (0803-1214)	-	-	2	1	1.5	0 0	0.1 0	0.2 📍 1.8	6.0	0 1.6 0	0.0 1.5	0.0 0.0 9	9.1	-	-	-	-	-		-	-	-	-	-	-
34	WHEEL AXLE	AISI Type 316L Stainless steel	-	-	1	1	1.5 0	0.2 (0 0	0.1 📍 1.8	1.0	0 0.0 0	0.7 1.5	0.0 0.0 3	3.2	>3.0-5.0	A1	1	1	1	18	962112.75	0.00105	1.1	2	1111.24	1147.24
35	BALL BEARING	RS COMPONENTS: 618-9957	-	-	2	0	1.5 0	0.2 0	0.1 0	0.1 📍 1.9	2.0	0 0.0 :	1.2 1.5	0.0 0.0 4	1.7	-	-	-	-	-		-	-	-	-	-	-
36	BS EN 24014 - M6 x 30 x 18-B	RS COMPONENTS: 520-144	-	-	5	0	1.5 0	0.3 0	0.1 0	0.2 📍 2.1	1.0	0 0.1 (0.0 0.0	0.0 0.6 1	.7	-	-	-	-	-	· -	-	-	-	-	-	-
37	BS EN 24014 - M6 x 45 x 18-B	RS COMPONENTS: 520-144	-	-	2	0	1.5 0	0.3 0	0.1 0	0.2 📍 2.1	1.0	0 0.1 0	0.0 0.0	0.0 0.6 1	.7	-	-	-	-	-		-	-	-	-	-	-
38	BS EN ISO - 4161 - M20 - N	RS COMPONENTS: 508-1307	-	-	2	0	1.5 0	0.3 0	0.1 0	0.2 💆 2.1	1.0	0 0.1 0	0.0 0.0	0.0 0.6 1	.7	-	-	-	-	-		-	-	-	-	-	-
39	BS EN 24014 - M16 x 80 x 38-B	RS COMPONENTS: 508-1177	-	-	1	0	1.5 0	0.3 0	0.1 0	0.2 💆 2.1	1.0	0 0.1 0	0.0 0.0	0.0 0.6 1	.7	-	-	-	-	-	-	-	-	-	-	-	-
		Number of Components			60		Feedi	ing Rat	tio	4.62	2	Fit	ting Rat	o 1	1.3							Highe	st Manufac	turing	Index		161368.4
		Design Efficiency (%)			20.8%	5																Sumo	f Manufact	turing	Index		249293.4

APPENDIX B – Lucas Analysis Detailed Calculation Table

Image: biology of the state with	ITEM NO.	PART NAME	MATERIAL	DENSITY	MASS	QTY	ESL	HANDLING IND	EX		FITTIN	G INDEX		TOLERANCE	BAND		I	Rc		Pc	Me	:	MAN	UFACTURING	COST INDEX
1 SE IN 2002 - MO2 - N Selintes steel austentit, All 3 -				kg/m3	kg		E	ABCD	Total	A B	C) E F	Total	SFCE FINISH		Cc	Стр	Cs C	t or Cf		Volume (mm3)	Cmt W	c Rc	Mc	Mi
BALL BEARING - DEMANNG HOLDER SS COMPONITYS 618-PM63 · C · C · C · C	1	BS EN 24034 - M20 - N	Stainless steel, austenitic, AISI 302, HT grade B	-	-	4	0	1.5 0.4 0.1 0.0	2.0	1.0 0.1	0.7 0	.0 0.0 0.	5 2.4	-	-	-	-	-	-	-	-		-	-	-
3 BEANING HOLDER Cast line, subtempered surtite, ADIS 1000	2	BALL BEARING 2	RS COMPONENTS: 618-9963	-	-	2	0	1.0 0.2 0.0 0.0	1.2	1.0 0.1	1.2 1	5 0.0 0.	3.8	-	-	-	-	-	-	-	-		-	-	-
Hail Main Actuation Thomson (H0)28360- 04000001407 I <thi< <="" td=""><td>3</td><td>BEARING HOLDER</td><td>Cast iron, austempered ductile, ADI 1050</td><td>7030</td><td>1.28</td><td>1</td><td>0</td><td>1.0 0.0 0.1 0.0</td><td>1.1</td><td>1.0 1.2</td><td>0.0 1</td><td>5 0.0 0.</td><td>0 3.7</td><td>>0.08-0.15</td><td>A1</td><td>1</td><td>1</td><td>1</td><td>2</td><td>100</td><td>182692.54</td><td>0.00105 1</td><td>2</td><td>191.83</td><td>391.83</td></thi<>	3	BEARING HOLDER	Cast iron, austempered ductile, ADI 1050	7030	1.28	1	0	1.0 0.0 0.1 0.0	1.1	1.0 1.2	0.0 1	5 0.0 0.	0 3.7	>0.08-0.15	A1	1	1	1	2	100	182692.54	0.00105 1	2	191.83	391.83
5 UPPER LGRAR LEVER Aluminum, 600; T1 280 1 0 0 0 1 0 0 0 1 0 0 0 1 0	4	MAIN ACTUATOR	Thomson (HD12B160- 0400CNO1EEM)	-	-	1	1	1.0 0.0 0.1 0.2	1.3	3.3 0.0	0.0 0	.0 0.0 0.	0 3.3	-	-	-	-	-	-	-	-		-	-	-
6 CHASSIS (RF) ALUMINUM 202-F3 280 4 1 0 <th< td=""><td>5</td><td>UPPER L.GEAR LEVER</td><td>Aluminum, 6005, T1</td><td>2680</td><td>1.90</td><td>2</td><td>1</td><td>1.0 0.0 0.1 0.2</td><td>1.3</td><td>3.3 0.0</td><td>0.7 0</td><td>0 0.0 0.</td><td>04</td><td>>1.0-3.0</td><td>B3</td><td>2.2</td><td>1</td><td>1</td><td>2.3</td><td>151</td><td>709544.36</td><td>0.00243 1.</td><td>1 5.06</td><td>1896.61</td><td>2660.67</td></th<>	5	UPPER L.GEAR LEVER	Aluminum, 6005, T1	2680	1.90	2	1	1.0 0.0 0.1 0.2	1.3	3.3 0.0	0.7 0	0 0.0 0.	04	>1.0-3.0	B3	2.2	1	1	2.3	151	709544.36	0.00243 1.	1 5.06	1896.61	2660.67
7 0 0 7 1	6	CHASSIS (RHS)	ALUMINUM 2024-T3	2780	44.84	1	1	1.5 0.0 0.1 0.2	1.8	1.0 0.0	1.2 0	0 0.0 0.	0 2.2	>5.0-10.0	B4	2.3	1	1	1	151	16128939.41	0.00243 1.	2 2.3	47031.99	47379.29
8 BS EV 2004 - MLS - N P BS COMPONENTS: 27.36B BS COMPONENTS: 97.36B COMPONENTS: 97.30B COMPONENTS: 97.30B C	7	UP/DOWN-LOCK ACTUATOR	Thomson (AA22- 05A65M0M0N)	-	-	1	1	1.0 0.0 0.1 0.0	1.1	3.3 0.0	0.0 0	0 0.7 0.	D 4	-	-	-	-	-	-	-	-		-	-	-
9 BS EN 2403 + M0 - B RS COMPONENTS: 9173163 - <td>8</td> <td>BS EN 24034 - M16 - N</td> <td>RS COMPONENTS: 276 768</td> <td>-</td> <td>-</td> <td>2</td> <td>0</td> <td>1.5 0.4 0.1 0.0</td> <td>2.0</td> <td>1.0 0.1</td> <td>0.0 1</td> <td>5 0.0 0.</td> <td>5 3.2</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td>	8	BS EN 24034 - M16 - N	RS COMPONENTS: 276 768	-	-	2	0	1.5 0.4 0.1 0.0	2.0	1.0 0.1	0.0 1	5 0.0 0.	5 3.2	-	-	-	-	-	-	-	-		-	-	-
100 LOCKING PISTON HOLDER Cast. iron, auxtempered dutil: AD1 300 700 1.80 1.1 1.0 0.2 1.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0<	9	BS EN 24034 - M10 - B	RS COMPONENTS: 917 3163	-	-	4	0	1.5 0.4 0.1 0.0	2.0	1.0 0.1	0.0 1	5 0.0 0.	5 3.2	-	-	-	-	-	-	-	-		-	-	-
11 8 C OMPONENTS: 31 2019 - <td>10</td> <td>LOCKING PISTON HOLDER</td> <td>Cast iron, austempered ductile, ADI 1050</td> <td>7030</td> <td>1.80</td> <td>1</td> <td>1</td> <td>1.0 0.2 0.1 0.2</td> <td>1.5</td> <td>1.0 0.0</td> <td>0.0 1</td> <td>5 0.0 0.</td> <td>0 2.5</td> <td>>0.03-0.05</td> <td>A2</td> <td>1.2</td> <td>1</td> <td>1.1</td> <td>2.4</td> <td>18</td> <td>256717.74</td> <td>0.00105 1.</td> <td>1 3.16</td> <td>8 296.51</td> <td>353.53</td>	10	LOCKING PISTON HOLDER	Cast iron, austempered ductile, ADI 1050	7030	1.80	1	1	1.0 0.2 0.1 0.2	1.5	1.0 0.0	0.0 1	5 0.0 0.	0 2.5	>0.03-0.05	A2	1.2	1	1.1	2.4	18	256717.74	0.00105 1.	1 3.16	8 296.51	353.53
12 0.00 FR LGRA LEVER ALUMINUM 2024-T3 0.00 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0	11	BS EN 24034 - M50 - B	RS COMPONENTS: 917 3019	-	-	1	0	1.5 0.0 0.1 0.0	1.6	1.0 0.1	0.7 0	0 0.0 0.	5 2.4	-	-	-	-	-	-	-	-		-	-	-
13 BS EN 24334 - M20 - B RS COMPONENTS: S0 1307 ·	12	LOWER L.GEAR LEVER	ALUMINUM 2024-T3	2780	3.40	1	1	1.0 0.0 0.1 0.2	1.3	1.0 0.1	0.7 0	0 0.0 0.	0 1.8	>0.08-0.15	B4	2.3	1	1	2.4	151	1222392.31	0.00243 1.	2 5.52	3564.50	4398.02
14 BS EN 24304 - M16 - B RS COMPONENTS: 508 1256 .	13	BS EN 24034 - M20 - B	RS COMPONENTS: 508 1307	-	-	2	0	1.5 0.4 0.1 0.0	2.0	1.0 0.1	0.0 0	0 0.0 0.	5 1.7	-	-	-	-	-	-	-	-		-	-	-
SHOCK STRUT Aluminum ALLOY 1350 2700 32.61 1	14	BS EN 24034 - M16 - B	RS COMPONENTS: 508 1256	-	-	2	0	1.5 0.4 0.1 0.0	2.0	1.0 0.1	0.0 0	0 0.0 0.	5 1.7	-	-	-	-	-	-	-	-		-	-	-
16 STEERING ROTATOR ALUMINUM 2024-T3 2780 0.80 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0	15	SHOCK STRUT	Aluminum ALLOY 1350	2700	32.61	1	1	1.0 0.0 0.1 0.2	1.3	3.3 0.0	0.0 0	0 0.0 0.	3.3	>1.0-3.0	A3	2.3	1	1	1.9	151	12076883.21	0.00243 1.	2 4.37	35216.19	35876.06
17 POWER STEERING ACTUATOR Alisi Type 316L Stainless steel 8027 0.06 4 0 15 0.4 0.0 2.0 10 0.0 0.0 2.0 10 0.00 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0	16	STEERING ROTATOR	ALUMINUM 2024-T3	2780	0.80	1	1	1.0 0.0 0.1 0.2	1.3	3.3 0.1	0.7 0	0 0.0 0.	0 4.1	>1.0-3.0	A2	2.1	1	1	1.9	151	287045.88	0.00243 1.	1 3.99	767.27	1369.76
18 POWER STEERING ACTUATOR Thomson (AA42-21865M0M0B) C 2 1 10 0	17	POWER STEERING SCREW	AISI Type 316L Stainless steel	8027	0.06	4	0	1.5 0.4 0.1 0.0	2.0	1.0 0.0	0.0 1	5 0.0 0.	0 2.5	>0.08-0.15	A1	1	4	1	1	10	8042.48	0.00341 1.	6 4	43.88	83.88
19 STEERING CONNECTOR ALSI Type 316L Stainless steel 8027 1.37 2 1 10 0 0.7 0 2.4 >1.0-3.0 C2 1.4 4 1 1 10 171239.19 0.00341 2.4 5.6 1401.42 1457.72 20 TORSION LINK CONNECTOR ALSI Type 316L Stainless steel 8027 1.71 2 1 10 0.0 </td <td>18</td> <td>POWER STEERING ACTUATOR</td> <td>Thomson (AA42- 21B65M0M0B)</td> <td></td> <td></td> <td>2</td> <td>1</td> <td>1.0 0.0 0.1 0.2</td> <td>1.3</td> <td>1.0 0.1</td> <td>0.0 0</td> <td>0 0.7 0.</td> <td>0 1.8</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>- </td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td>	18	POWER STEERING ACTUATOR	Thomson (AA42- 21B65M0M0B)			2	1	1.0 0.0 0.1 0.2	1.3	1.0 0.1	0.0 0	0 0.7 0.	0 1.8	-	-	-	-	-	-	-	-		-	-	-
20 TORSION LINK CONNECTOR AISI Type 316L Stainless steel 8027 1.71 2 1 10 0<	19	STEERING CONNECTOR	AISI Type 316L Stainless steel	8027	1.37	2	1	1.0 0.0 0.1 0.2	1.3	1.0 0.0	0.7 0	0 0.7 0.	2.4	>1.0-3.0	C2	1.4	4	1	1	10	171239.19	0.00341 2.	4 5.6	1401.42	1457.42
21 UPPER TORQUE LINK Carbon-fiber-reinforced polymer 1100 0.11 1 1 1 0 0 0 1 3.3 0.10 0 0.0 4.8 >3.0-5.0 83 1.8 1.5 1 1 1 0 0.0 0 1 3.3 0.10 0.0 0.0 4.8 >3.0-5.0 83 1.8 1.5 1 1 1 0 0.0 0 1.1 3.3 0.10 0.0 0.4 >3.0-5.0 83 1.8 1.5 1 1 1 0 0 0 1.1 3.3 0.10 0.0 4.8 >3.0-5.0 83 1.8 1.5 1 1 10 0.00035 1.1 2.7 38.90 308.90 23 LOWER TORQUE LINK Aluminum ALLOY 1350 2700 25.65 1 1.0 0.0 0 0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0	20	TORSION LINK CONNECTOR	AISI Type 316L Stainless steel	8027	1.71	2	1	1.0 0.0 0.1 0.2	1.3	1.0 0.1	0.0 0	0 0.0 0.	0 1.1	>3.0-5.0	A2	1.2	4	1	1	10	212864.3	0.00341 2	4.8	1451.73	1499.73
Production Production <td>21</td> <td>UPPER TORQUE LINK</td> <td>Carbon-fiber-reinforced</td> <td>1100</td> <td>0.11</td> <td>1</td> <td>1</td> <td>1 0 0 0</td> <td>1.1</td> <td>3.3 0.1</td> <td>0.7 0</td> <td>0 0.7 0.</td> <td>4.8</td> <td>>3.0-5.0</td> <td>B3</td> <td>1.8</td> <td>1.5</td> <td>1</td> <td>1</td> <td>100</td> <td>101034.04</td> <td>0.00035 1.</td> <td>1 2.7</td> <td>38.90</td> <td>308.90</td>	21	UPPER TORQUE LINK	Carbon-fiber-reinforced	1100	0.11	1	1	1 0 0 0	1.1	3.3 0.1	0.7 0	0 0.7 0.	4.8	>3.0-5.0	B3	1.8	1.5	1	1	100	101034.04	0.00035 1.	1 2.7	38.90	308.90
Ling Hommun Alleo 1000 Fibo 0 Fibo	22	WHEEL BRACKET	Aluminum ALLOV 1350	2700	25.36	1	0	15 00 01 02	18	33.01	07.0	0 0 0 0	n 41	>0.03-0.05	B4	23	1	1	23	151	9391419 22	0.00243 1	5 20	27385.38	28184 17
Lot Hummun Alco 1300 Hub 1300 </td <td>22</td> <td></td> <td>Aluminum ALLOY 1350</td> <td>1100</td> <td>0.13</td> <td>1</td> <td>1</td> <td>1 0 0 0</td> <td>11</td> <td>3301</td> <td>070</td> <td>0 0 7 0</td> <td>5 54</td> <td>>3.0-5.0</td> <td>B3</td> <td>1.8</td> <td>15</td> <td>1</td> <td>1</td> <td>100</td> <td>116079 66</td> <td>0.00035 1</td> <td>1 27</td> <td>44 69</td> <td>314 69</td>	22		Aluminum ALLOY 1350	1100	0.13	1	1	1 0 0 0	11	3301	070	0 0 7 0	5 54	>3.0-5.0	B3	1.8	15	1	1	100	116079 66	0.00035 1	1 27	44 69	314 69
25 Aero trainer (AD4D4) - 1 1 1.5 0.6 0.0	24	BS EN 24034 - M10 - N	PS COMPONENTS: 122 4405	1100	0.10	Â	Ô	15 04 01 00	2.0	1001	0.0.0	0 0 0 0	5 17	-				2	-		-			-	-
L26 Wheel Wright (TI37-1548) 1 1 1.5 0.0	25	TIRE	Aero trainer (AD4D4)			1	1	15 06 00 00	21	3301	0.0 0	0 0 0 0	5 4	-	-	-	-	-		-	-				-
10 0 0 1 1 10 0.0	25	WHEEL DIM	Wheel Wright (TI37-1548)			1	1	15 00 00 00	15	10 01	0.0 0	0 0 0 0	11	-	-	-	-			-			-		-
27 Distance Califier 1000 mitre (m2000 metric) 11 11 10 10 000	20	BRAKE CALIPER	Tolomatic (H220SAECIG)		_	1	1	10 00 01 02	13	60 01	0.0 0	0 0 7 0	68	-	-	-	-			-					-
28 DALL DLANING 1 Indicating indication of the field of the f	27	BALL BEADING 1	RS COMPONENTS: 618-9957			2	1	10 02 01 00	13	1001	0.0 0	5 0 0 0	1 26		-					.					-
25 Distribute (bdos 1147) 1 1 1 1 0 0 0 1 1 1 0 <td>20</td> <td>BRAKE DISC</td> <td>Tolomatic (0803-1214)</td> <td></td> <td></td> <td>1</td> <td>1</td> <td>15 00 00 00</td> <td>15</td> <td>10 01</td> <td>0.0 1</td> <td>0 0 0 0</td> <td>18</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	20	BRAKE DISC	Tolomatic (0803-1214)			1	1	15 00 00 00	15	10 01	0.0 1	0 0 0 0	18	-	-	-				-					-
30 STRUCT CONNECTOR Cost indit, abstempered 7030 6.76 1 1 1 0 0.0	25	DRAKE DISC	Cost iron, pustempored	-		-	1	1.5 0.0 0.0 0.0		1.0 0.1	0.7 0	0 0.0 0.													
31 BS EN 24034 - M50 - N 32 RS COMPONENTS: 9173020 - 1 0 1.5 0.4 0.1 0.0 <td>30</td> <td>STRUCT CONNECTOR</td> <td>ductile ADI 1050</td> <td>7030</td> <td>6.76</td> <td>1</td> <td>1</td> <td>1.0 0.0 0.0 0.0</td> <td>1.0</td> <td>3.3 0.1</td> <td>0.0 0</td> <td>0 0.0 0.</td> <td>0 3.4</td> <td>>3.0-5.0</td> <td>A1</td> <td>1</td> <td>1</td> <td>1</td> <td>2</td> <td>18</td> <td>962112.75</td> <td>0.00105 1.</td> <td>1 2</td> <td>1111.24</td> <td>1147.24</td>	30	STRUCT CONNECTOR	ductile ADI 1050	7030	6.76	1	1	1.0 0.0 0.0 0.0	1.0	3.3 0.1	0.0 0	0 0.0 0.	0 3.4	>3.0-5.0	A1	1	1	1	2	18	962112.75	0.00105 1.	1 2	1111.24	1147.24
S1 Deck 2403 million Number of Components S2 C HASSIS (LHS) Aluminum, 6005, T1 2680 43.22 1 1 1.5 0.0 <th0.0< th=""> 0.0<!--</td--><td>31</td><td>BS EN 24034 - M50 - N</td><td>DS COMPONENTS: 017 2020</td><td></td><td></td><td></td><td>0</td><td>15 04 01 00</td><td>20</td><td>10.01</td><td>00.0</td><td>0.00.00</td><td>5 17</td><td></td><td>-</td><td>-</td><td>-</td><td></td><td>. </td><td>_ </td><td></td><td></td><td></td><td></td><td></td></th0.0<>	31	BS EN 24034 - M50 - N	DS COMPONENTS: 017 2020				0	15 04 01 00	20	10.01	00.0	0.00.00	5 17		-	-	-		.	_					
Operation Operation <t< td=""><td>32</td><td>CHASSIS (LHS)</td><td>Aluminum 6005 T1</td><td>2680</td><td>43.22</td><td></td><td>1</td><td>15 00 01 02</td><td>1.8</td><td>10 0.1</td><td>0.00</td><td>0 0 0 0</td><td>n 17</td><td>>5.0-10.0</td><td>B4</td><td>23</td><td>1</td><td>1</td><td>1</td><td>151</td><td>16128168 11</td><td>0.00243 1</td><td>2 23</td><td>47029 74</td><td>47377 04</td></t<>	32	CHASSIS (LHS)	Aluminum 6005 T1	2680	43.22		1	15 00 01 02	1.8	10 0.1	0.00	0 0 0 0	n 17	>5.0-10.0	B4	23	1	1	1	151	16128168 11	0.00243 1	2 23	47029 74	47377 04
Design Efficiency (%) 47.2% State and the state of the st	32	CHASSIS (CHS)	Number of Com	nonents	43.22	53	Fe	eding Ratio	3.48	1.0 0.0 Fi	itting R	atio	5.84	. 5.0 10.0	94	2.0	-	-	-	101	Highest	Manufacturin	g Index	1022.14	47379.3
			Design Efficier	ncv (%)		47.2%								L							Sum of	Manufacturin	g Index		172802.2

Image: Second		8	7	6	5		4	3	2 1		_
Image: Section of the seccond of the section of the section of the section of th			\frown \frown \frown	\sim \sim \sim		NO.	PART NU	JMBER	MATERIAL	QTY.	
P LOWELLAKELTYR ALLWARMA, 2004, R.N. 17 I P 3 SPECKTRPF ALLWARMA, 2004, R.N. 17 I P 4 WERKLAKELERK ALLWARMA, 2004, R.N. 14 I I 4 WERKLAKELERK ALLWARMA, 2004, R.N. 14 I I 4 WERKLAKELERK ALLWARMA, 2004, R.N. 14 I I 7 MARIA CELLARS LEVER ALLWARMA, 2004, R.N. 14 I I 8 MURDOWN-ACCIC INSPEC ALLWARMA, 2004, R.N. 15 I I 9 MARIA CELLARS LEVER ALLWARMA, 2004, R.N. 15 I I 10 MURDOWN-ACCIC INSPEC ALLWARMA, 2004, R.N. 15 I I 11 SE DELARCHARMA, 2004, R.N. 21, R.N. 14 I I I I 11 SE DELARCHARMA, 2004, R.N. 21, R.N. 14 I I I I 12 SE DELARCHARMA, 2004, R.N. 21, R.N. 15 I I I I 13 SE DELARCHARMA, 2004, R.N. 21, R.N. 14 I I I I I			(14)(6)(10)($\left(\begin{array}{c}9\end{array}\right)\left(11\right)\left(\begin{array}{c}5\end{array}\right)$		1	LANDING GE	AR CHASSIS	ALUMINUM, 2024, T3	1	
3 1 1	F		\uparrow \uparrow \uparrow \uparrow	\uparrow \uparrow \uparrow \uparrow		2	LOWER L.G.	EAR LEVER	ALUMINUM, A201.0, CAST, T7	1	F
4 UPPER LAGALINER ALUMBRUK 2024 TS 1 6 MARK ACLANDRO CHILDER ALUMBRUK AGA 14 1 7 MARK ACLANDRO CHILDER ALUMBRUK AGA 14 1 8 UPPER MARKAN CARANGA MARK ACLANDRO CHILDER ALUMBRUK AGA 14 1 9 UPPER VALUARDER ISTON ALUMBRUK AGA 14 1 1 9 UPPER VALUARDER ISTON ALUMBRUK AGA 14 1 9 UPPER VALUARDER ISTON ALUMBRUK AGA 14 1 10 UPPER VALUARDER ISTON ALUMBRUK AGA 14 1 11 BS TEVROT-NINCOCK MORE ALUMBRUK AGA 13 1 12 UPPER VALUARDER ISTON ALUMBRUK AGA 14 3 13 BS TEVROT-NINCOCK TRUCH ALUMBRUK AGA 14 3 14 BS IN 2014-MIX 2X 05 ADE BS COMPORENTS 204495 1 15 BS IN 2014-MIX 2X 05 ADE BS COMPORENTS 204495 1 16 BS IN 2014-MIX 2X 05 ADE BS COMPORENTS 204495 1 17 IDIOCK STRUTCUNDER ALUMBRUK AGA 10 2 18 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>3</th> <th>SHOCK</th> <th>STRUT</th> <th>ALUMINUM, 2024, T3</th> <th>1</th> <th></th>						3	SHOCK	STRUT	ALUMINUM, 2024, T3	1	
5 MMA ACUIDOR CYLINGR ALUMANUM, 445.14 1 6 MMA ACUIDOR CYLINGR ALUMANUM, 445.14 1 7 MMA ACUIDOR CYLINGR ALUMANUM, 445.14 1 8 UPJDOWINCOCK CYLINDR ALUMANUM, 445.14 1 9 UPJDOWINCOCK CYLINDR ALUMANUM, 445.14 1 10 BPDOWINCOCK CYLINDR ALUMANUM, 445.14 1 11 BS B12404-MILS X 85.24 BS COMMONITIS 129.445 1 12 BS P12404-MILS X 85.24 BS COMMONITIS 129.445 1 13 BS P12404-MILS X 85.24 BS COMMONITIS 129.445 1 14 BS P12404-MILS X 85.24 BS COMMONITIS 129.445 1 15 BHOLS XIELD PSICOL ALUMANUM 4204.13 2 16 STORESTINC CHARGE ALUMANUM						4	UPPER L.GE	AR LEVER	ALUMINUM, 2024, T3	1	
A MAIN ACUILATOR RETON A LUMINUM, 248,17 1 F (1) </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>5</th> <th>MAIN ACTUAT</th> <th>OR CYLINDER</th> <th>ALUMINUM, 6463, T4</th> <th>1</th> <th></th>						5	MAIN ACTUAT	OR CYLINDER	ALUMINUM, 6463, T4	1	
Image: constraint of the second sec						6	MAIN ACTUA	tor piston	ALUMINUM, 6463, T4	1	
B UUDOWN ICCC UNDER ALLIANIUA, 724, 13 1 C 11 BUPDEWN ICCC UNDER ALLIANIUA, 724, 13 1 A 11 BUPDEWN ICCC UNDER ALLIANIUA, 724, 13 1 B 11 BUPDEWN ICCC UNDER ALLIANIUA, 724, 13 1 B 11 BUPDEWN ICCC UNDER ALLIANIUA, 724, 13 1 B 11 BUPDEWN ICCC UNDER ALLIANIUA, 724, 13 1 B 11 BUPDEWN ICCC UNDER ALLIANIUA, 724, 13 1 B 11 BUPDEWN ICCC UNDER BUDEWN ICCC UNDER 13 B 11 BUPDEWN ICCC UNDER BUDEWN ICCC UNDER 11 B 11 BUPDEWN ICCC UNDER BUDEWN ICCC UNDER 11 B 12 BUPDEWN ICCC UNDER ALLIANIUA, 724, 13 1 C 13 BUPDEWN ICCC UNDER ALLIANIUA, 724, 13 1 C 14 BUPDEWN ICCC UNDER ALLIANIUA, 724, 13 1 C 12 IDVER DORAUTINK CARDON HERS BUDECT DOTYMER 1 12 IDVER DORAUTINK CARDON HERS BUDECT DOTYMER						7	MAIN ACTUAT	OR GRIPPER	ALUMINUM, 6463, T4	1	
P UPDOWNLOCK CULLIDER ALLMAINM. 2024. 13 1 13 UPDOWNLOCK CULLIDER ALLMAINM. 2024. 13 1 11 15 10 UPDOWNLOCK CULLIDER ALLMAINM. 2024. 13 1 12 13 11 15 12 13 12 13 14 11 15 12 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 14 14 14 14 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14 15 14 15 16 16 16 16 16 16 16 16 16 17 16 17 17 11 17 11 17 11 17 11 17 11 16 16 16						8	UP/DOWN-LO	ЭСК НООК	ALUMINUM, 2024, T3	1	╢┍
10 Untypervention Autumenta, 2724, 15 1 0	E				7	9	UP/DOWN-LOO	CK CYLINDER	ALUMINUM, 2024, T3	1	lF
115 11 15 11 16 17 17 18 17 18 18 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 20 17 17 17 17 17 17 18 17 20 17 17 17 17 18 20 18 20 18 20 18 20 18 20 19 21 20 20 10 21 20 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 22 22 22 22 22 23 23 23 23 <t< th=""><th></th><th></th><th></th><th></th><th></th><th>10</th><th>UP/DPWN-LC</th><th>OCK PISTON</th><th>ALUMINUM, 2024, T3</th><th>1</th><th></th></t<>						10	UP/DPWN-LC	OCK PISTON	ALUMINUM, 2024, T3	1	
1 1		(15)				11	BS EN 24014 - M	10 X 45 X 26-B	RS COMPONENTS: 418-8104	3	
4 13 BS D1 24014 - M10 X 20 X 26.8 FB SCOMPONENTS 118-8105 1 13 BS D1 24014 - M10 X 20 X 26.8 FB SCOMPONENTS 118-8105 1 13 BS D1 24014 - M10 X 20 X 26.8 FB SCOMPONENTS 118-8105 1 13 BS D1 24014 - M10 X 20 X 26.8 FB SCOMPONENTS 118-8105 1 13 BS D1 24014 - M10 X 20 X 26.8 FB SCOMPONENTS 118-8105 1 14 BS D1 24014 - M10 X 20 X 26.8 FS SCOMPONENTS 118-8105 1 13 BS D1 24014 - M10 X 20 X 26.8 FS SCOMPONENTS 122 4405 1 14 BS D1 24014 - M10 X 20 X 26.8 FS SCOMPONENTS 122 4405 1 12 COMER TORQUE LINK CARDON HERE REINFORCED POLYMER 1 14 BS D1 24014 - M10 X 100 X 38-4 FS COMPONENTS 122 4405 1 12 COMER TORQUE LINK CARDON HERE REINFORCED POLYMER 1 12 COMPRE TERENS COLLINER CAST BRON ALONANU, 2024, 13 2 14 WEED REINFORCED FOLYMER 1 1 1 15 SE SUBJARD COLLINER CAST BRON ALONANU, 2024, 13 2 2 16 SE D124014 - M14 X 100 X 38-4 FS COMPONENTS: 1						12	BS EN 24034	4 - M10 - N	RS COMPONENTS: 122-4405	4	
Image: Construct of the second sec		(4)				13	BS EN 24014 - M	10 X 70 X 26-B	RS COMPONENTS: 418-8105	1	
B IS B SEN 2023 - MI2 - N ES COMPONENTS: 1224425 1 C C C C SEN 2023 - MI2 - N ES COMPONENTS: 1224425 1 I IS SEN CX STRUT CYTINDER A LUMINUM, 2024, 13 1 1 C C SEN CX STRUT CYTINDER A LUMINUM, 2024, 13 2 III SEN CX STRUT CYTINDER A LUMINUM, 2024, 13 2 C C C CARSON HEER REINFORCED POLYMER 1 III SEERING CONTECTOR A LUMINUM, 2024, 13 2 C C CARSON HEER REINFORCED POLYMER 1 III CARSON HEER REINFORCED POLYMER 1 III CARSON HEER REINFORCED POLYMER 1 III CARSON HEER REINFORCED POLYMER 1 IIII CARSON HEER REINFORCED POLYMER 1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII						14	BS EN 24014 - M	12 X 60 X 30-B	RS COMPONENTS: 508-0994	1	
D (3)		(8)			3	15	BS EN 24034	4 - M12 - N	RS COMPONENTS: 122-4405	1	
13 17 SHOCK SRUTC/UNDER ALUMINUM, 2024, 13 1 2 18 STEERING CONNECTOR ALUMINUM, 2024, 13 2 12 19 SILLERING ROLATOR ALUMINUM, 2024, 13 2 12 20 UPPER TORQUE LINK CABBON FIBER REINFORCED POLYMER 1 14 31 UPPER TORQUE LINK CABBON FIBER REINFORCED POLYMER 1 20 UPPER TORQUE LINK CABBON FIBER REINFORCED POLYMER 1 21 IOWER STEERING CYLINDER ALUMINUM, 2024, 13 2 22 POWER STEERING CYLINDER ALUMINUM, 2024, 13 2 23 POWER STEERING CYLINDER ALUMINUM, 2024, 13 2 24 POWER STEERING CYLINDER CASTIRON, NODULAR GAAPHIFE, FN GUS 800.2 2 25 BS EN 24014 MIO x30 x26 & B RS COMPONENTS: 122 4405 1 24 POWER STEERING CYLINDER ALUMINUM, 2024, 13 1 25 BS EN 24014 - MIO x 30 x26 & B RS COMPONENTS: 122 4405 1 26 UPPER TORQUE LINK CARBON FISTER: EXAMPT 1 27 BS EN 24014 - MIO x 30 x 26 B RS COMPONENTS: 122 4405 1<	D				(25)	16	SHOCK STR	ut piston	ALUMINUM, 2024, T3	1	D
2 18 31 31 32 32 32 32 32 32 33		(13)	MAR			17	SHOCK STRU	T CYLINDER	ALUMINUM, 2024, T3	1	
12 19 STERRIC ROLATOR A LUMINUM, 2024, 13 2 12 10 UPPET TORQUE LINK CARBON HERR RENFORCED POLYMER 1 12 10 UPPET TORQUE LINK CARBON HERR RENFORCED POLYMER 1 12 10 UPPET TORQUE LINK CARBON HERR RENFORCED POLYMER 1 20 UPPET TORQUE LINK CARBON HERR RENFORCED POLYMER 1 21 LOWER TORQUE LINK CARBON HERR RENFORCED POLYMER 1 22 POWER STEERING CYLINDER ALUMINUM, 2024, 13 2 23 POWER STEERING SCREW CASTRON, NODULAR GRAPHITE, EN GIB 8002 2 24 POWER STEERING SCREW CASTRON, NODULAR GRAPHITE, EN GIB 8002 2 24 POWER STEERING SCREW CASTRON, NODULAR GRAPHITE, EN GIB 8002 2 25 BS IN 24014 - M16 X 100 X 38-N RS COMPONINTIS: 122 4425 1 20 WHEL RIM WHELL RIM TOLOMATIC (803-1214) 1 21 BS IN 24014 - M16 X 100 X 38-N RS COMPONINTIS: 122 4425 1 22 BS IN 24014 - M16 X 100 X 38-N RS COMPONINTIS: 122 4425 1 23 BARAE DAICE			• ⁴⁶		(18)	18	STEERING CC	DNNECTOR	ALUMINUM, 2024, T3	2	
12 20 UPPER TORQUE LINK CARBON-HIBER-REINGORCED POLYMAR 1 21 LOWER TORQUE LINK CARBON-HIBER-REINGORCED POLYMAR 1 20 UPPER TORQUE LINK CARBON-HIBER-REINGORCED POLYMAR 1 21 LOWER TORQUE LINK CARBON-HIBER-REINFORCED POLYMAR 1 22 POWER STERING CUILDER ALUMINIUM.2024.13 2 23 POWER STERING CUILDER ALUMINIUM.2024.13 2 24 POWER STERING CUILDER CASTIRON NODILAR GRAPHIE. EN GIS 8000.2 2 24 POWER STERING CUILDER ALUMINIUM.2024.13 1 39 30 30 30 31 8124014-MI0.40 N RS COMPONENTS: 122.4425 1 24 POWER STRANG TOLOMATIC (0803			}			19	STEERING F	ROTATOR	ALUMINUM, 2024, T3	2	
12 LOWER TORQUE LINK CARBON-HEER-REINFORCED POLYMER 1 26 20 17 23 23 POWER STEERING CYLINDER ALUMINIUM, 2024, 13 2 20 17 23 23 POWER STEERING SCREW CASTIRON, NODULAR GRAPHITE, EN GJS 800.2 2 24 POWER STEERING SCREW CASTIRON, NODULAR GRAPHITE, EN GJS 800.2 2 24 POWER STEERING SCREW CASTIRON, NODULAR GRAPHITE, EN GJS 800.2 2 25 BS EN 24014 - M16 X 100 X 38-N RS COMPONENTS: 122 4405 4 24 POWER STEERING SCREW CASTIRON, NODULAR GRAPHITE, EN GJS 800.2 2 25 BS EN 24014 - M16 X 100 X 38-N RS COMPONENTS: 122 4405 4 26 BS EN 24034 - M16 - N RS COMPONENTS: 122 4405 1 27 BS EN 24034 - M16 - N RS COMPONENTS: 122 4425 1 28 TYRE AERON-RIARING (MIDIN, 2024, 13 1 29 WHELL RIM WHELL WINCH (MIDIN, 122, 24, 13 1 30 WHELL BRACKET ALUMINUM, 2024, 13 1 31 BRAKE CALIPER TOLOMATIC (0831-124) 1 33 BS EN					(19)	20	UPPER TOR	QUE LINK	CARBON-FIBER-REINFORCED POLYMER	1 -	╞
26 22 POWER STEERING CYLINDER ALUMINUM, 2024, 13 2 20 17 23 POWER STEERING CYLINDER ALUMINUM, 2024, 13 2 27 23 POWER STEERING CYLINDER ALUMINUM, 2024, 13 2 27 23 POWER STEERING CYLINDER ALUMINUM, 2024, 13 2 27 23 POWER STEERING CYLINDER ALUMINUM, 2024, 13 2 24 POWER STEERING SCREW CASH RON, NOULAR GRAPHITE, EN GJS 8002, 2 2 25 BS EN 24014 M10 x 30 x 26-B RS COMPONENTS: 122 4405 4 24 POWER STEERING CYLINDER ALUMINUM, 2024, 13 2 25 BS EN 24014 M10 x 30 x 26-B RS COMPONENTS: 122 4405 4 24 BS EN 24014 M16 - N RS COMPONENTS: 122 4405 1 29 WHEEL RIM WHEEL AND M WHEEL AND M 1 20 WHEEL RIM WHEEL MIDINUM, 2024, 13 1 1 39 30 WHEEL RIM KILL MHEEL RIM KILL 1 30 WHEEL RIM KILL MUNUM, 2024, 13 1 1 31 BRAKE DISC TOLOMATIC (10803-1214) <td< th=""><th></th><th></th><th></th><th></th><th>\bigcirc</th><th>21</th><th>LOWER TOP</th><th>RQUE LINK</th><th>CARBON-FIBER-REINFORCED POLYMER</th><th>1</th><th></th></td<>					\bigcirc	21	LOWER TOP	RQUE LINK	CARBON-FIBER-REINFORCED POLYMER	1	
C 20 17 20 17 21 23 24 POWER STEERING ISCNEW CAST IRON. NODULAR GRAPHITE, EN GJS 800 2 2 24 POWER STEERING SCREW CAST IRON. NODULAR GRAPHITE, EN GJS 800 2 2 25 BS EN 24014 - M16 X 100 X 38-N RS COMPONENTS: 122 44055 4 26 BS EN 24014 - M16 X 100 X 38-N RS COMPONENTS: 122 4405 4 26 BS EN 24014 - M16 X 100 X 38-N RS COMPONENTS: 122 4405 1 27 BS EN 24014 - M16 X 100 X 38-N RS COMPONENTS: 122 4405 1 28 TYRE AERO TRAINER (ADD4) 1 29 WHEEL RIM WHEEL WRIGHT (1137-1548) 1 30 WHEEL BRACKET ALUMINUM. 2024, T3 1 31 BRAKE DISC TOLOMATIC (0803-1214) 1 32 BRAKE DISC TOLOMATIC (0803-1214) 2 33 PADNORMAL TOLOMATIC (0803-1214) 2 34 WHEEL AXLE AISI TYPE 316L STAINLESS STEEL 1 35 BALL BEARING RS COMPONENTS: 520-144 5 37 BS EN 12014 - M6X 30 X		(26)			—(22)	22	POWER STEERIN	NG CYLINDER	ALUMINUM, 2024, T3	2	
20 17 21 23 39 30 39 30 31 32 32 BRAKE DISC 33 31 33 31 33 31 33 31 33 31 33 31 33 31 33 31 33 31 32 35 34 WHEEL AXLE 35 BS EN 24014 - M16 X 80 X 30 X 18-B 36 BS EN 24014 - M16 X 100 X 38-N 37 BS EN 24014 - M16 X 100 X 38-N 38 33 31 39 30					\sim	23	POWER STEER	ING PISTON	ALUMINUM, 2024, T3	2	
27 23 23 24 8 RS COMPONENTS: 122 4405 4 24 16 30 16 12 BS EN 24014 - M16 X 100 X 38-N RS COMPONENTS: 122 4498 1 27 24 16 30 30 12 BS EN 24014 - M16 X 100 X 38-N RS COMPONENTS: 122 4498 1 28 TYRE AERO TRAINER (AD4D4) 1 1 29 WHEEL RIM WHEEL RIMCKET ALUMINUM, 2024.T3 1 30 WHEEL RIMCKET ALUMINUM, 2024.T3 1 31 BRAKE DISC TOLOMATIC (0803-1214) 1 32 BRAKE CALIPER TOLOMATIC (0803-1214) 1 33 31 32 36 29 35 8 33 31 32 36 29 35 8 8 S COMPONENTS: 508-107 2 36 BS EN 24014 - M6 X 30 X 18-8 RS COMPONENTS: 508-1307 2 36 BS EN 24014 - M6 X 30 X 18-8 RS COMPONENTS: 508-1307 2 38 BS EN 24014 - M6 X 30 X 18-8 RS COMPONENTS: 508-1307 2 39 BS EN 24014 - M16 X 80 X 38-8		(20)			(17)	24	POWER STEER	ING SCREW	CAST IRON, NODULAR GRAPHITE, EN GJS 800 2	2	
21 26 BS EN 24014 - M16 X 100 X 38-N RS COMPONENTS: 122 4498 1 39 30 30 30 30 16 12 39 30 30 30 30 12 8 TYRE AERO TRAINER (AD404) 1 10 30 WHEEL RIM WHEEL WRIGHT (TI57-1548) 1 1 30 WHEEL BRACKET ALUMINUM, 2024, T3 1 31 BRAKE DISC TOLOMATIC (M803-1214) 1 31 BRAKE CALIPER TOLOMATIC (M803-1214) 1 32 BRAKE CALIPER TOLOMATIC (M803-1214) 2 34 WHEEL AXLE AISI TYPE 316 LISS STEEL 1 35 BALL BEARING RS COMPONENTS: 520-144 2 36 BS EN 24014 - M6 X 45 X 18-B RS COMPONENTS: 520-144 2 36 BS EN 24014 - M6 X 45 X 18-B RS COMPONENTS: 520-144 2 37 BS EN 24014 - M6 X 45 X 18-B RS COMPONENTS: 520-144 2 38 BS EN 24014 - M6 X 45 X 18-B RS COMPONENTS: 520-144 2 39 BS EN 24014 - M6 X 45 X 18-B RS COMPONENTS: 520-144					23	25	BS EN 24014 M	10 x 30 x 26-B	RS COMPONENTS: 122 4405	4	
24 16 16 16 16 16 16 128 TYRE AERO TRAINER (AD4D4) 1 39 30 WHEEL RIM WHEEL RIM WHEEL WRICHT (TI37-1548) 1 30 WHEEL BRACKET ALUMINUM, 2024, 13 1 30 WHEEL BRACKET ALUMINUM, 2024, 13 1 31 BRAKE DISC TOLOMATIC (0803-1214) 1 32 BRAKE CALIPER TOLOMATIC (1420SAFCIG) 1 34 WHEEL AXLE AISI TYPE 316L STAINLES STEEL 1 34 WHEEL AXLE AISI TYPE 316L STAINLES STEEL 1 35 BALL BEARING RS COMPONENTS: 520-144 5 36 BS EN 24014 - M6 X 45 X 18-B RS COMPONENTS: 520-144 2 36 BS EN 24014 - M6 X 45 X 18-B RS COMPONENTS: 508-1307 2 37 BS EN 24014 - M16 X 80 X 38-B RS COMPONENTS: 508-1307 2 38 BS EN 150 - 4161 - M20 - N RS COMPONENTS: 508-1307 2 39 BS EN 24014 - M16 X 80 X 38-B RS COMPONENTS: 508-1177 1 39 BS EN 24014 - M16 X 80 X 38-B RS COMPONENTS: 508-1177 <th></th> <th>21</th> <th></th> <th></th> <th></th> <th>26</th> <th>BS EN 24014 - M1</th> <th>16 X 100 X 38-N</th> <th>RS COMPONENTS: 122 4498</th> <th>1</th> <th></th>		21				26	BS EN 24014 - M1	16 X 100 X 38-N	RS COMPONENTS: 122 4498	1	
24 10 28 TYRE AERO TRAINER (AD4D4) 1 39 30 30 WHEEL RIM WHEEL WRIGHT (TI37-1548) 1 30 WHEEL BRACKET ALUMINUM, 2024, T3 1 30 WHEEL BRACKET ALUMINUM, 2024, T3 1 31 BRAKE CALIPER TOLOMATIC (0803-1214) 1 32 BRAKE CALIPER TOLOMATIC (0803-1214) 2 34 WHEEL AXLE AISI TYPE 31 6L STAINLESS STEEL 1 35 BALL BEARING RS COMPONENTS: 618-9957 2 36 BS EN 24014 - M6 X 30 X 18-B RS COMPONENTS: 50-144 5 37 BS EN 24014 - M6 X 45 X 18-B RS COMPONENTS: 500-144 2 38 33 31 32 36 2 1 38 BS EN 150 - 4161 - M20 - N RS COMPONENTS: 500-144 2 2 39 BS EN 24014 - M16 X 80 X 38-B RS COMPONENTS: 508-1307 2 39 BS EN 24014 - M16 X 80 X 38-B RS COMPONENTS: 508-1177 1 30 BS EN 24014 - M16 X 80 X 38-B RS COMPONENTS: 508-1177 1		24				27	BS EN 24034	4 - M16 - N	RS COMPONENTS: 122 4425	1	
39 30 30 22 WHEEL RIM WHEEL WRIGHT (1137-1548) 1 30 WHEEL BRACKET ALUMINUM, 2024, T3 1 31 BRAKE DISC TOLOMATIC (10803-1214) 1 32 BRAKE CALIPER TOLOMATIC (10803-1214) 2 34 WHEEL AXLE ALSI TYPE 316L STAINLESS STEEL 1 33 31 32 36 29 35 28 A 33 31 32 36 29 35 28 A 33 31 32 36 29 35 28 APPENDIX C 8 7 6 5 4 3 2 1		24				28	TYR	RE	AERO TRAINER (AD4D4)	1	
B 30 WHEEL BRACKET ALUMINUM, 2024, T3 1 30 WHEEL BRACKET ALUMINUM, 2024, T3 1 31 BRAKE DISC TOLOMATIC (0803-1214) 1 32 BRAKE CALIPER TOLOMATIC (1420SAFCIG) 1 33 PADNORMAL TOLOMATIC (0803-1214) 2 34 WHEEL AXLE AISI TYPE 316L STAINLESS STEEL 1 35 BALL BEARING RS COMPONENTS: 618-9957 2 36 BS EN 24014 - M6 X 30 X 18-B RS COMPONENTS: 502-144 5 37 BS EN 24014 - M6 X 45 X 18-B RS COMPONENTS: 508-1307 2 38 BS EN 124014 - M16 X 80 X 38-B RS COMPONENTS: 508-1307 2 39 BS EN 24014 - M16 X 80 X 38-B RS COMPONENTS: 508-1307 2 39 BS EN 124014 - M16 X 80 X 38-B RS COMPONENTS: 508-1177 1		(39)			(30)	29	WHEEL	RIM	WHEEL WRIGHT (TI37-1548)	1	
B 31 BRAKE DISC TOLOMATIC (0803-1214) 1 B 37 34 33 31 BRAKE CALIPER TOLOMATIC (0803-1214) 2 34 WHEEL AXLE AISI TYPE 316L STAINLESS STEEL 1 38 33 31 32 36 29 35 28 A 38 33 31 32 36 29 35 28 APPENDIX C 38 BS EN 150 - 4161 - M20 - N RS COMPONENTS: 508-1307 2 2 39 BS EN 24014 - M16 X 80 X 38-B RS COMPONENTS: 508-1177 1 39 BS EN 24014 - M16 X 80 X 38-B RS COMPONENTS: 508-1177 1			M ^T	$\langle \rangle$		30	WHEEL BE	RACKET	ALUMINUM, 2024, T3	1	
21 32 BRAKE CALIPER TOLOMATIC (H220SAFCIG) 1 37 37 33 PADNORMAL TOLOMATIC (0803-1214) 2 34 34 WHEEL AXLE AISI TYPE 316L STAINLESS STEEL 1 34 33 31 32 36 29 35 28 A PPENDIX C 38 33 31 32 36 29 35 28 APPENDIX C 38 BS EN 24014 - M6 X 45 X 18-B RS COMPONENTS: 508-1307 2 39 BS EN 24014 - M16 X 80 X 38-B RS COMPONENTS: 508-1307 2 39 BS EN 24014 - M16 X 80 X 38-B RS COMPONENTS: 508-1307 2 39 BS EN 24014 - M16 X 80 X 38-B RS COMPONENTS: 508-1307 2 1	B					31	BRAKE	DISC	TOLOMATIC (0803-1214)	1	B
37 33 PADNORMAL TOLOMATIC (0803-1214) 2 34 WHEEL AXLE AISI TYPE 316L STAINLESS STEEL 1 34 WHEEL AXLE AISI TYPE 316L STAINLESS STEEL 1 35 BALL BEARING RS COMPONENTS: 618-9957 2 36 BS EN 24014 - M6 X 30 X 18-B RS COMPONENTS: 520-144 5 37 BS EN 24014 - M6 X 45 X 18-B RS COMPONENTS: 500-144 2 38 BS EN 150 - 4161 - M20 - N RS COMPONENTS: 508-1307 2 39 BS EN 24014 - M16 X 80 X 38-B RS COMPONENTS: 508-1177 1		(21)				32	BRAKE C	ALIPER	TOLOMATIC (H220SAFCIG)	1	
37 34 WHEEL AXLE AISI TYPE 316L STAINLESS STEEL 1 34 WHEEL AXLE AISI TYPE 316L STAINLESS STEEL 1 34 WHEEL AXLE AISI TYPE 316L STAINLESS STEEL 1 34 WHEEL AXLE AISI TYPE 316L STAINLESS STEEL 1 35 BALL BEARING RS COMPONENTS: 618-9957 2 36 BS EN 24014 - M6 X 30 X 18-B RS COMPONENTS: 520-144 5 37 BS EN 24014 - M6 X 45 X 18-B RS COMPONENTS: 520-144 2 38 31 32 36 29 35 28 APPENDIX C 38 BS EN 150 - 4161 - M20 - N RS COMPONENTS: 508-1307 2 39 BS EN 24014 - M16 X 80 X 38-B RS COMPONENTS: 508-1177 1			ECO E			33	PADNO	RMAL	TOLOMATIC (0803-1214)	2	
34 34 35 BALL BEARING RS COMPONENTS: 618-9957 2 36 BS EN 24014 - M6 X 30 X 18-B RS COMPONENTS: 520-144 5 37 BS EN 24014 - M6 X 45 X 18-B RS COMPONENTS: 520-144 2 38 31 32 36 29 35 28 8 7 6 5 4 3 2 1		3/				34	WHEEL	AXLE	AISI TYPE 316L STAINLESS STEEL	1	
34 36 BS EN 24014 - M6 X 30 X 18-B RS COMPONENTS: 520-144 5 38 31 32 36 29 35 28 8 7 6 5 4 38 RS COMPONENTS: 508-1307 2 8 7 6 5 4 3 2 1						35	BALL BE	ARING	RS COMPONENTS: 618-9957	2	
A 38 31 32 36 29 35 28 APPENDIX C 37 BS EN 24014 - M6 X 45 X 18-B RS COMPONENTS: 520-144 2 4 2 8 7 6 5 4 3 8 2 1		34				36	BS EN 24014 - N	16 X 30 X 18-B	RS COMPONENTS: 520-144	5	
38 31 32 36 29 35 28 APPENDIX C 38 BS EN ISO - 4161 - M20 - N RS COMPONENTS: 508-1307 2 8 7 6 5 4 33 RS COMPONENTS: 508-1177 1	A					37	BS EN 24014 - N	16 X 45 X 18-B	RS COMPONENTS: 520-144	2	A
33 31 32 36 29 35 28 8 7 6 5 4 3 RS COMPONENTS: 508-1177 1					YENDIX C	38	BS EN ISO - 41	61 - M20 - N	RS COMPONENTS: 508-1307	2	
8 7 6 5 4 3 2 1			(31) (32) (36)	(29) (35) (28)		39	BS EN 24014 - M	16 X 80 X 38-B	RS COMPONENTS: 508-1177	1	
		8	7	6	5		4	3	2 1		

	1	2	3	4	
A		$\left. \begin{array}{c} 3 \\ \end{array} \right. \left(\begin{array}{c} 4 \\ \end{array} \right) \left(\left(\left(\begin{array}{c} 4 \\ \end{array} \right) \left(\left(\left(\begin{array}{c} 4 \\ \end{array} \right) \left($	6 7 8	9 10	ITEM N
					1
				(12)	2
	(32)				3
					4
В					.5
				(15)	6
	O				7
				(16)	8
		V O Z	offer		9
				(17)	10
		V	H		11
					12
					13
				(19)	14
	_				15
				(20)	16
					1/
טן					10
			9	22	20
					21
				23	2.
					22
					24
E					25
				(26)	26
					27
-					28
				(28)	29
					30
F			APPEND		31
					32
	1	2	3	4	

		5	6	7						
ITEM	1 NO.	PA	ART NAME	MATERI	QTY.	A				
	1	BS EN 2	24034 - M20 - N	STAINLESS STEEL, AUST HT GRAD	ENITIC, AISI 302, DE B	4				
	2	BALL	BEARING 2	RS COMPONENT	2	T				
	3	BEAR	ING HOLDER	CAST IRON, AUSTEMI ADI 105	PERED DUCTILE, 50	1				
	4	MAIN	ACTUATOR	THOMSON (HE 0400CNO1	D12B160- EEM)	1				
	5	UPPER	L.GEAR LEVER	ALUMINUM, d	2	B				
	6	CH	ASSIS (RHS)	ALUMINUM 2	2024-T3	1				
	7	UP/DOWN	-LOCK ACTUATOR	THOMSON (AA22- C)5A65M0M0N)	1				
	8	BS EN 2	4034 - M16 - N	RS COMPONEN	TS: 276 768	2				
	9	BS EN 2	24034 - M10 - B	RS COMPONENT	S: 917 3163	4				
1	10	IOCKING	PISTON HOLDER	CAST IRON, AUSTEMI ADI 105	PERED DUCTILE, 50	1				
1	11	BS EN 2	24034 - M50 - B	RS COMPONENT	S: 917 3019	1				
1	12	LOWER	L.GEAR LEVER	ALUMINUM 2	2024-T3	1	P			
1	13	BS EN 2	24034 - M20 - B	RS COMPONENT	S: 508 1307	2				
1	4	BS EN 2	24034 - M16 - B	RS COMPONENT	S: 508 1256	2	1			
1	15	SHO	ock strut	ALUMINUM AL	LOY 1350	1—	╢			
1	16	STEERI	NG ROTATOR	ALUMINUM 2	2024-T3	1				
1	17	POWER S	TEERING SCREW	AISI TYPE 316L STA	4					
1	18	POWER STE	ERING ACTUATOR	THOMSON (AA42-2	21B65M0M0B)	2	Ь			
-	19	STEERING	G CONNECTOR	AISI TYPE 316L STA	INLESS STEEL	2	T			
	20	torsion i	INK CONNECTOR	AISI TYPE 316L STA	INLESS STEEL	2				
	21	UPPER	TORQUE LINK	CARBON-FIBER-R POLYMI	EINFORCED ER	1				
	22	WHE	el bracket	ALUMINUM AL	1	T				
	23	LOWER	R TORQUE LINK	ALUMINUM AL	LOY 1350	1				
	24	BS EN 2	4034 - M10 - N	RS COMPONENT	S: 122 4405	4				
	25		TIRE	AERO TRAINER	(AD4D4)	1	F			
	26	W	HEEL RIM	WHEEL WRIGHT	(TI37-1548)	1				
	27	BRA	KE CALIPER	TOLOMATIC (H2	20SAFCIG)	1	T			
	28	BALL	BEARING 1	RS COMPONENT	S: 618-9957	2	┣			
	29	BR	AKE DISC	TOLOMATIC (0	1					
3	30	STRUCT	CONNECTOR	CAST IRON, AUSTEMI ADI 105	PERED DUCTILE,	1				
3	31	BS EN 2	4034 - M50 - N	RS COMPONENT	S: 917 3020	1	F			
	32	CH	ASSIS (LHS)	ALUMINUM, d	6005, T1	1	Ţ			
		5	6	7	8					