
 
 

 

University of Birmingham 
 

School of Engineering 
Department of Mechanical Engineering 

 

 
 

Individual Engineering Project 

  
 

BEng 

 

Surname Vigneswaran 

First Name(s) Vinush 

ID number 1690302 

Supervisor’s Name Professor Hongming Xu & Dr Quan Zhou 

Project Title 
Intelligent energy management strategy for plug-in hybrid electric 
vehicle based on Fuzzy Logic and Particle Swarm Optimisation 



 
 

Abstract  
 

Environmental as well as economic issues provide a compelling impetus to develop clean, 

efficient, and sustainable vehicles. The promise for highly efficient, and low emission individual 

transportation is represented by Plug-In Hybrid-Electric Vehicles (PHEV), by shifting the 

demand from crude oil to electricity. This paper presents an intelligent energy management 

strategy for a series PHEVs by developing a Fuzzy Logic Controller (FLC). A detailed 

description of developing a FLC, based on vehicle dynamics and internal power distribution, 

is provided. Fuzzy logic provides a suitable method for realising an optimal trade-off between 

the efficiencies of all components of the PHEV, however, this strategy provides limited sub-

optimal solutions. Therefore, the FL control actions and rules, are developed using accelerated 

Particle Swarm Optimisation (PSO), to achieve global optimisation. The objective of the PSO 

algorithm is to minimise the energy cost during vehicle operation whilst maintaining the 

battery’s State-of-Charge (SoC), therefore increasing fuel economy and system efficiency. 

The FLC is optimised offline using real vehicle data (BMW i3), to train the model. In order to 

validate the optimisation strategy, the PSO FL will be compared with other prominent 

optimisation strategies; Genetic Algorithm (GA), Simulated Annealing (SA), PSO and Pattern 

Search (PS) hybrid. An analysis on the fuel economy and system efficiency indicates PSO 

and PSO-PS outperforms GA and SA. PSO FL based strategy improves the range of the 

vehicle for the NEDC drive cycle by 3.49 % and the system efficiency increases by 8.9 %.  
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Nomenclature 
 

Acronym  Definition 

PHEV 
ICE 
FLC 
FIS 
MF 

PSO 
GA 
PS 
SA 

SoC 
APU 
EMS 
EGU 

 Plug-in hybrid electric vehicle 
Internal combustion engine 
Fuzzy logic controller 
Fuzzy logic inference 
Membership functions 
Particle swarm optimisation 
Genetic algorithm 
Pattern search 
Simulated annealing 
State-of-charge 
Auxiliary power unit 
Energy management system 
Engine generator unit 
 

Symbols   

P 
η 
i 

c 
ω 
M 

SoC 
T 
t 

R 
I 

N 
Cap 

 power (kW) 
efficiency 
controller input 
controller output 
angular speed 
torque 
state of charge 
temperature  
time 
resistance 
current 
number of cells 
nominal capacitance 
 

Subscript   

demand 
PMM 

aux 
battp 

PC 
egu 

battp 
grid 

f 
mech 
regen 

loss 
max 

int 
p 
s 

 demand 
permanent magnet motor 
auxiliary 
battery pack 
power convertor 
engine-generator unit 
battery pack 
grid 
fuel 
mechanical 
regenerative brakes 
loss 
maximum 
internal  
parallel 
series 
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1. Introduction 

 

1.1. Project Background 

The development of PHEVs plays a crucial role in the UK government’s Road to Zero strategy [1], which 

aims for at least 50-70% of new car sales to be ultra-low emission by 2030 [1]. A PHEV consists of an 

electric motor and an internal combustion engine (ICE) for propulsion, with energy supplied from fuel 

and the national grid (plug-in). The combination of an ICE and electric motor provides a compromise 

between minimum fuel consumption and maximum driving range [2]. A range-extended PHEV with a 

series hybrid topology is discussed in this study, whereby, the electric motor is solely responsible for 

propulsion [2], and the battery is charged via three mediums: the national grid, small engine generator 

(using fuel) and regenerative braking.  

The major challenge in plug-in hybrid vehicle design is the management of the energy flow 

from/to different powertrain components dynamically during real vehicle operation to achieve the 

maximum energy efficiency, while maintaining the battery’s state-of-charge. In order to achieve the best 

fuel economy, it necessary to develop an efficient power management system, by considering power 

demands based on driving behaviour and the battery’s State of Charge (SoC). 

1.2.   Project Aims  

The predominant aim of this project is to investigate the implementation of the fuzzy logic controller to 

develop an optimal energy management strategy for PHEVs, therefore increase fuel economy. The 

fuzzy logic controller will be developed using accelerated Particle Swarm Optimisation (PSO), and 

validated against other optimisation algorithms such as; genetic algorithm, simulated annealing and 

pattern search (hybridised with PSO).  

1.3.   Project Objectives 

The objective of this study can be broken down into the following: 

1) Research into fuzzy logic and optimisation theory, and its current applications in control 

engineering using credible literature. 

2) Model hybrid vehicle powertrain components and energy management system, using 

MATLAB/Simulink 

3) Develop an offline optimisation of the FLC using accelerated PSO, PSO-PS, GA and SA. 

4) Analyse the performance of the FLC in real-time simulation. 

5) Discuss the results comparing with the original model (based on BMW i3), custom fuzzy-rule 

EMS, and the other optimisation strategies (i.e. PSO-PS, GA and SA) 
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1.4. Literature Review

The energy management system (EMS) is responsible for managing the energy flow from the two 

sources of energy to the motor and auxiliary power use [3] [4]. The optimal control can be achieved by 

analysing the control inputs and providing a command [5], to vary engine-generator power output. 

Therefore, the EMS design can be simplified to defining a functional relationship between the inputs 

and the outputs, as described by Wang et al. [6]. This functional relationship can be obtained using a 

deterministic or fuzzy rule-based strategy. The EMS design is a complex, non-linear, and uncertain 

dynamical problem. Therefore it would be difficult to develop a mathematical model with rigorous 

formulas from every real-time input. Deterministic rule-based strategies use threshold input values to 

decide the output command. The parameters’ adjustment is reliant on human experience or “trial and 

error” methods [7]. Using this strategy, the output power distribution of the vehicle is categorised into 

various priority levels, selected based on discrete threshold values for the SoC and power required by 

the motor. This method is advantageous due to its simplicity and easy implementation in real-time 

control; however, this provides sub-optimal results.  

In contrast, fuzzy rule-based strategies are favoured by automotive manufacturers, for their 

effectiveness and real-time application [8]. The common types of fuzzy reasoning are: Mamdani-type 

and Sugeno-type, both of which work with crisp data inputs [9]. The Mamdani-type fuzzy logic system 

is composed of three processes; fuzzification, rule evaluation and defuzzification. Fuzzification converts 

the ‘crisp’ inputs into fuzzy sets. The rule evaluation process takes qualitative descriptions of the 

system, as if-then statements (rules), and evaluates the input data against the rules [6].  An input value 

belongs to a fuzzy set to a certain degree, represented by the degree of membership [10]. The output 

of the controller is obtained by evaluating the degrees of membership of the if-parts of all rules, and the 

then-parts of all rules are averaged, weighted by these degrees of membership [10]. A fuzzy output is 

then converted into a crisp output. The fundamental difference between Sugeno and Mandami-type 

FLCs arise from the method of generating the crisp outputs [11]. Unlike Mandami, Sugeno uses 

weighted average to compute a crisp output [11] [9]. Therefore Mamdani consists of output membership 

functions. Mamdani-type is widely accepted for capturing expert knowledge [11]. It allows describing 

the expertise in an intuitive manner; however, it entails a substantial computational burden [11]. In this 

paper a Mamdani-type, fuzzy logic strategy will be investigated, and the membership functions 

optimised to provide the best fuel economy.  

Energy management systems using rule-base and fuzzy logic control (FLC) strategies provide 

limited sub-optimal solutions [12]. The major issue with the design of fuzzy logic control systems, is the 

lack of a systematic approach to defining the membership functions and the linguistic control rules that 

governs the fuzzy sets’ mapping strategy. Hence, the rules are independent of the membership 

functions, therefore a good performance of the system is not guaranteed [6]. The system performance 

can be improved by adjusting the membership functions. Thus, the fuzzy system can be formulated as 

a search problem in high dimensional space, where each point represent by a rule set and membership 

function [13] [14] [6]. Developing the optimal fuzzy system design is equivalent to finding the optimal 

location of a hyper-surface, produced by the performance of the system given some performance 
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criteria [6] [13] [14] [15]. These characteristics make Swarm Intelligence (SI) better candidates for 

searching the space [6] [16]. Therefore, this paper presents a strategy for optimising the membership 

functions and the fuzzy rule base, using Particle Swarm Optimisation (PSO), and evaluate its 

performance against other optimisation strategies such as genetic algorithm and simulated annealing. 

Genetic Algorithm (GA) is a probabilistic technique, developed by John Holland [17], effective 

in optimising fuzzy logic controllers [7][18][19]. GA starts with a population of randomly generated 

solutions, which represents a vector in hyperspace. The population advances towards better solutions 

by applying “genetic” operators [18]. The generated new population is based on natural selection, 

whereby a relatively good solution will produce offspring that replace the bad solutions [19], determined 

by a fitness function [18]. The advantage of GA for optimization is that it is highly-explorative, capable 

of parallel processing and does not depend on gradients. However, GA has limited accuracy of the final 

solution and requires a high number of function evaluation to obtain the global solution [20]. 

Furthermore, GA has a tendency to converge at a local optima, this occurrence can be minimised by 

starting with a large population, however, this will significantly reduce the speed of the optimisation [21]. 

Simulated Annealing (SA) is based on metal annealing process [17]. At each iteration, a new 

point is generated a certain distance from the current solution, based on a probability distribution [17] 

[22]. The major disadvantage of simulated annealing is that exploitation is relatively weak, as the 

acceptance is carried out by a probability condition.  Liu et al. [22] presented a study investigating the 

application of SA in learning and tuning membership functions of fuzzy inference system, and concluded 

that SA algorithm is very effectual. Compared to genetic algorithms, the main strength of simulated 

annealing is its wide applicability [23], and low computational effort required. 

Particle Swarm Optimisation (PSO), developed by Kennedy and Eberhart in 1995 [17], is a 

metaheuristic algorithm proposed for global, multi-objective optimisation of non-linear problems [17]. 

PSO has become one of the most widely used swarm intelligence-based algorithms in engineering [17]. 

In the PSO algorithm, the system is initialised with a population of random solutions, called particles, 

with an associated random velocity. The movement of the particle consists of a stochastic and 

deterministic component [17]. Each particle records its coordinates, pbest, associated with its local best 

solution, lbest, based on the fitness function, as it “searches” through the problem space. The local 

best solution is attained within a local topological neighbourhood of particles. Similarly, the global best, 

gbest, the overall best solution by any particle in the population, and its location, is also recorded. At 

each time step, the velocity of the particles are adjusted towards the coordinates of the local best and 

the populations’ global best solution in history, while it also has a tendency to move randomly. A 

simplified version of PSO, accelerated PSO, was proposed by Xin-She Yang in 2008 [24], whereby it is 

suggested that the diversity and quality of the solutions can be maintained by omitting the local best 

solution of the original PSO, and instead simulating the diversity using a random variable, r, from N(0,1) 

[17] [24]. The advantage of this simplification is the significant decrease in computational effort due to 

reduced number of calculations per iterations [24]. 
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1.5.  Contribution of this project   

Although fuzzy logic controllers have many advantages in increasing the performance of energy 

management systems, its performance is heavily dependent on the parameters of the membership 

functions and rule bases. This paper provides a strategy for optimal energy management through a 

metaheuristic algorithm to solve, a complex multi-objective, non-linear problem. The PSO algorithm is 

further validated by conducting a critical performance comparison with genetic algorithm, simulated 

annealing and PSO-PS. 

1.6. Organisation of this paper   

In Section 2, the methodology is divided into three parts. Firstly, the problem formulation and the control 

system model of the PHEV is described. Secondly, a fuzzy energy management system for a PHEV in 

real-time is proposed, based on the SoC and the power demand of the motor. Thirdly, the methodology 

of the FLC optimisation, using PSO, is described. Section 3 presents the results, analysis and 

discussion. In this section, a comparison of the effect of the different optimisation algorithms (PSO, GA, 

SA and PSO-PS) in tuning the FLC, is presented. Therefore, the effect of the engine-generator power 

supply, fuel consumption, SoC and the battery power is analysed, and optimal power management 

strategy evaluated. Finally, a conclusion is provided. 
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2. Methodology  

 

2.1. Modelling a cyber-physical power management system for Plug-in HEV 

A PHEV can run as a conventional battery electric vehicle (BEV), operating in charge depleting (CD) 

mode, or it can run as a hybrid electric vehicle (HEV) and maintain the average SoC, in charge 

sustaining (CS) mode. A series PHEV configuration is shown in figure1 

 

 

 

 

Figure 1: Power flow & control model 

 

A model of the PHEV is required to analyse and specify the optimal energy management control 

strategy. In this paper, a quasi-static forward modelling approach is suggested, by using the 

conservation law. The power demand as a function of time is shown in equation 1. 

𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑡) =
𝑃𝑃𝑀𝑀(𝑡)

𝜂𝑃𝑀𝑀
+ 𝑃𝑎𝑢𝑥(𝑡) =  𝑃𝑏𝑎𝑡𝑡𝑝(𝑡) ∙ 𝜂𝑃𝐶 + 𝑃𝑒𝑔𝑢(𝑡) ∙ 𝜂𝑒𝑔𝑢 

where 𝑃𝑃𝑀𝑀(𝑡) is the power requirement by the permanent magnet motor, and 𝑃𝑎𝑢𝑥(𝑡) denotes the 

auxiliary power requirement by the vehicle; 𝑃𝑏𝑎𝑡𝑡𝑝(𝑡) is the power provided by the battery package, 

𝑃𝑒𝑔𝑢(𝑡) is the power provided by the engine-generator unit. 𝜂𝑃𝐶, 𝜂𝑒𝑔𝑢 and 𝜂𝑃𝑀𝑀 denote the efficiency of 

the power converter, engine-generator unit and motor, respectively. Figure 1 shows a schematic of the 

power flow model. Note that in the following calculations the efficiency variable will be omitted, to 

describe the control parameters and modelling process, however the efficiencies were implemented 

respectively in the computer simulations. Additionally, the energy from the grid is stored in the battery 

(Equation 1) 
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before the vehicle switches on, therefore the power from the grid can be implemented by setting the 

initial State-of-Charge as 100%. 

The driver model, simulated on MATLAB/Simulink, controls the speed of the vehicle via an 

accelerator pedal input (%) to follow the drive cycle’s objective velocity, and implementing a feedback 

of the actual velocity. The battery, motor and the vehicle body was modelled on MATLAB/Simulink using 

the powertrain blocksets. The vehicle’s body was modelled as a single degree of freedom, rigid two-

axle vehicle body with constant mass undergoing longitudinal motion. The block set for the vehicle body 

accounts for aerodynamic drag, road incline and force distribution between axles during acceleration. 

The parameters of the vehicle modelling for this case study was based on the BMW i3-REX, shown in 

table 1.  

The motor was modelled using a mapped motor powertrain block set parameterised by a 

torque-speed envelope, shown in figure 2. Hence the mechanical power produced by the motor is 

shown in equation 2. The required electrical power is shown in equation 3. 

𝑃𝑚𝑒𝑐ℎ = (𝜔𝑃𝑀𝑀 ∙ 𝑀𝑒) 

𝑃𝑃𝑀𝑀 = 𝑃𝑚𝑒𝑐ℎ + 𝑃𝑙𝑜𝑠𝑠 − 𝑃𝑟𝑒𝑔𝑒𝑛 

where, 𝑃𝑚𝑒𝑐ℎ(𝑡) denotes the mechanical power transferred from the motor, 𝜔𝑃𝑀𝑀 denotes the motor 

shaft speed (rad/s) and 𝑇𝑒 denotes the motor output shaft torque (N.m). In equation 3, 𝑃𝑃𝑀𝑀 denotes 

the electrical power required from the battery, and 𝑃𝑙𝑜𝑠𝑠 is the power loss. 𝑃𝑟𝑒𝑔𝑒𝑛 denoted the power 

regenerated by the brakes. 

The regenerative braking system can be modelled as reducing the power requirement of the 

motor, given certain conditions. In equation 1, the motor power is the net power after the reduction of 

the regenerative braking power. In this study the regenerative brakes only functions when the speed of 

the vehicle is greater than 5 mph. The regenerative brakes are calculated based on the speed of the 

vehicle and the brake torque applied during deceleration.  

Table 1: Basic Parameters of the case study vehicle  

Parameter Value Unit 

Vehicle mass 1315 kg 

Radius of the wheel 350 mm 

Frontal Area 2.82 m2 

Motor power rating 125 kW 

Engine Power (@ 5000 rpm) 28 kW 

Stated Capacity of Battery 18.8 kWh 

Lithium-ion Nominal Voltage 355.2 V 

 

(Equation 2) 

(Equation 3) 
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The Datasheet Battery block implements a lithium-ion battery which was parameterised using 

the data from Argonne National Library [25], based on the 2014 BMW i3-REX. The battery output 

voltage is determined using lookup tables for the battery’s internal resistance and open circuit voltage 

data. The lookup tables are functions of the state-of-charge (SoC) and battery temperature, 

characterising the battery performance at various operating points [26], as shown in equation 4 and 5. 

𝐸𝑚 = 𝑓(𝑆𝑜𝐶)        

𝑅𝑖𝑛𝑡 = 𝑔(𝑇, 𝑆𝑜𝐶) 

Where, 𝐸𝑚  denotes the battery open-circuit voltage, 𝑆𝑜𝐶  denotes the State-of-Charge, 𝑅𝑖𝑛𝑡  is the 

battery internal resistance, and 𝑇 is the battery temperature. The state-of-charge was calculated as 

shown in equation 7, using equation 6. 

𝐼𝑏𝑎𝑡𝑡  =  
𝐼𝑖𝑛
𝑁𝑝

 

𝑆 = 𝑆(𝑡0) − 
1

𝐶𝑎𝑝𝑏𝑎𝑡𝑡
∫ 𝐼𝑏𝑎𝑡𝑡 

𝑡

0

 𝑑𝑡 

Where, 𝐼𝑏𝑎𝑡𝑡𝑝 is the battery current per module, 𝐼𝑖𝑛 is the combined current flowing from the battery 

network (to meet the current requirement of the motor), and 𝑁𝑝 denotes the number of cells in parallel. 

In equation 7, the nominal battery capacity is 𝐶𝑎𝑝𝑏𝑎𝑡𝑡 and 𝑡 denotes time. Equation 8 can be used to 

calculate the unfiltered output battery voltage, and the power transferred from the battery pack was 

calculated using equation 9.  

𝑉𝑏𝑎𝑡𝑡𝑝 = 𝑁𝑠 ∙ (𝐸𝑚 − 𝐼𝑏𝑎𝑡𝑡 ∙ 𝑅𝑖𝑛𝑡) 

 

𝑃𝑏𝑎𝑡𝑡𝑝 = 𝑉𝑏𝑎𝑡𝑡 ∙ 𝐼𝑏𝑎𝑡𝑡 

 

Where, 𝑉𝑏𝑎𝑡𝑡𝑝 signifies the combined voltage of the battery and 𝑁𝑠 denotes the number of cells in series. 

In equation 9, 𝑃𝑏𝑎𝑡𝑡𝑝 denotes the battery power.  

  

(Equation 4) 

(Equation 5) 

(Equation 6) 

(Equation 7) 

(Equation 8) 

(Equation 9) 
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Figure 2: (a) Torque-Speed envelope data for 2014 BMW i3 motor  

 

A modelled engine-generator incorporates a command signal, as shown in figure 1, sent to the engine-

generator from the controller. The command signals are based on the real-time SoC of the model. The 

SoC threshold values were separated into 4 profiles, corresponding to 4 discrete engine power 

commands mimicking the BMW i3 control system. The engine-generator is  modelled as a simple, dual 

mode switch case [27], as shown in equation 10 and 11. Where, 𝑚 denotes the minimum SoC threshold 

to determine the operation mode.  

Charge Depleting mode condition: 𝑆𝑜𝐶 > 𝑚  

 

{

𝑃𝑒𝑔𝑢 = 0
 

𝑃𝑏𝑎𝑡𝑡𝑝 = 𝑃𝑑𝑒𝑚𝑎𝑛𝑑

           

 

Charge Sustaining mode condition: 𝑆𝑜𝐶 ≤ 𝑚  

{

𝑃𝑒𝑔𝑢 = max{0, 𝑃𝑑𝑒𝑚𝑎𝑛𝑑}

𝑃𝑒𝑔𝑢 = 0

𝑃𝑏𝑎𝑡𝑡𝑝 = 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 − 𝑃𝑒𝑔𝑢 

  
𝒊𝒇       𝑓 > 0
𝒊𝒇       𝑓 = 0

   

         

 

(Equation 10) 

(Equation 11) 
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Where 𝑓 denotes the fuel level in the tank. In this study, three typical drive cycles, NEDC, US06, and 

WLTC are analysed using the MATLAB/Simulink model shown in figure 3. A high-fidelity model was 

used for the fuel flow, whereby the volumetric fuel flow was calculated based on the engine speed, fuel 

lower heating value and fuel mass flow. The PHEV model considers the power losses within the 

driveline, by calculating the mechanical power transferred via the driveshaft and the rear axle. The 

longitudinal behaviour of an ideal wheel was implemented to consider the braking force, therefore the 

power transferred, which can be calculated by summing the tractive power, power from external torque 

(applied by the axle to the wheel) and the power from the vertical force applied to the wheel by the 

vehicle or suspension.  

 

 

 

Figure 3: Top level simulation schematic of PHEV (MATLAB/Simulink) 

 

2.2. Formulation of a Fuzzy Logic Controller for power management 

2.2.1. Fuzzy Logic Inputs and Output 

The objective of this control problem is to minimise the energy losses during operation. It is important 

to note in a series hybrid vehicle, the engine-generator only powers the battery, as shown in Figure 1, 

therefore the vehicle power requirement does not directly correlate with the load on the engine-

generator. The fuzzy logic requires to make a “decision” on the engine power based on some 

parameters which describe the State-of-Charge of the battery pack and the requirement by the motor 

and the auxiliary devices. Therefore during the Charge Sustain mode, the power of the engine-

generator unit can be described as the output of the FLC, as shown in equation 12. 
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Charge Sustaining mode (FLC switched on): 𝑆𝑜𝐶 ≤ 𝑚𝑓𝑙𝑐     

{
 
 

 
 
𝑃𝑓𝑙𝑐 = 𝐹𝐿𝐶(𝑆𝑜𝐶, 𝑃𝑑𝑒𝑚𝑎𝑛𝑑)

𝑃𝑒𝑔𝑢 = max{0, 𝑃𝑓𝑙𝑐}

𝑃𝑒𝑔𝑢 = 0

𝑃𝑏𝑎𝑡𝑡𝑝 = 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 − 𝑃𝑒𝑔𝑢  

  

 
𝒊𝒇       𝑓 > 0
𝒊𝒇       𝑓 = 0

 

         

 

where 𝑚𝑓𝑙𝑐 is not a constant, and is determined by the FLC rules, and is dynamically implemented 

based on the inputs. In this paper the fuzzy logic will be used to provide an engine power command to 

the engine-generator based on two inputs; the SoC of the battery and the vehicle power requirement 

(electric motor power demand), as shown in figure 4. 

The Mamdani fuzzy inference system’s inputs are crisp (non-fuzzy) values, these inputs are 

evaluated in parallel using fuzzy reasoning. The output of each rule is a fuzzy set derived from the 

output membership function and the implication method of the FIS. In this study, the output fuzzy sets 

are combined into a single fuzzy set using the maximum aggregation method, for each output variable 

[28]. The combined output fuzzy set is defuzzified using the centroid defuzzification method [28], which 

computes the crisp value by considering the fuzzy set as an area with uniform thickness and density, 

therefore the crisp single output can be obtained by calculating the centre of gravity of the fuzzy set 

along the horizontal axis. A summary of the FLC schematic can be seen in figure 4 and 5(a).  

 

  

 

 

 

Figure 4: Fuzzy logic membership function plot (a) SoC input (b) Power demand input (c) Engine 

speed output 

 

  

(Equation 12) 
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2.2.2. Membership Functions & Fuzzy Rules 

The membership functions relate the crisp input to a fuzzy set. Trapezoidal memberships are 

parameterised with the four vertices of the trapezium, [𝑥1 𝑥2 𝑥3 𝑥4]. Triangular membership functions 

can be categorised as a particular case of trapezoidal membership function, where the vertex 𝑥2 = 𝑥3 . 

Barua et al. have described an interval-based theoretical explanation for the preference in the use 

trapezoidal membership function [29].  

The input SoC consists of four balanced membership functions, figure 4(a), which can be 

described using the following linguistic states; High (H), Medium (M), Low (L) and Critical (C). The input 

electric motor power demand also consists of four membership functions (figure 4b) High (H), Medium 

(M), Low (L) and Minimal (Z) when the vehicle is idling or the brakes are applied. The engine power 

output, can be classified into the same membership functions, figure 4(c), as the motor requirement.  

As there are four membership functions for each input, the rules can be summarised by a 4 by 4 matrix, 

with 16 potential fuzzy set outputs, shown in table 2. The fuzzy rules were determined based on the 

current BMW i3 EMS, as well as expert experience and intuition. 

 

 

 

 

Table 2: Custom Fuzzy Rules for FLC 

 

 

  Motor Power Demand 

  H M L Z 

S
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H Z Z Z Z 

M L L Z Z 

L H M M L 

C H H H M 
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2.3. Accelerated particle swarm optimisation algorithm 

2.3.1. Cost function 

The cost function is essential for evaluating the fitness of each particle. For the tuning of the fuzzy logic 

controller, the Mean Root Squared Error (MRSE) cost function was used as shown in equation 13. The 

benchmark data for the inputs of MRSE, were obtained from Argonne Laboratory [25]. 

𝑀𝑅𝑆𝐸 = 𝐸(𝑘) =
1

𝑁
∑ √(𝑒1

2(𝑖) + 𝑒2
2(𝑖))𝑁

𝑖−1      

where 𝑒1
 (𝑖) denotes the trajectory of the error of the 𝑖th sample for the SoC input, 𝑒2

 (𝑖) denotes the 

trajectory error of the 𝑖th sample for the motor requirement input, 𝑁  is the number of sample and 𝑘 is 

the iteration number. 

2.3.2. Mechanism for accelerated Particle Swarm Optimisation algorithm (PSO) 

The accelerated PSO was implemented by modifying the ‘particleswarm’ function from the Global 

Toolbox in MATLAB. In the simplified accelerated PSO version, the particles’ trajectory move towards 

the global best, with a tendency to move randomly. The accelerated PSO does not considers the 

particle’s best position, only the global best. The position vector of the particle can be described as 

follows: 

𝑥𝑖
𝑡+1 = (1 − 𝛽)𝑥𝑖

𝑡 +  𝛽(𝑔𝑏𝑒𝑠𝑡) +  𝛼𝑟 

 

where 𝑥𝑖
  denotes the position vector, 𝑟  is a random variable drawn from a Gaussian probability 

distribution, 𝛼 and 𝛽 are the learning parameters. The diversity provided by including the particle’s 

individual best in PSO, is substituted by the 𝛼𝑟 term to induce randomness. According to Yang et al, 𝛼 

needs to be consistent with the scale of the problem, and therefore it is a function of the scale of each 

variable (L), typically  𝛼 = 0.1 L to 0.5 L. 𝛽 is associated with the “attraction” parameter of the particle, 

that characterises the attraction towards the global best 𝛽=0.5 is suitable for this case-study [30]. 

 

2.4. Tuning Fuzzy Inference System using Optimisation Algorithms 

The membership functions and the rule bases of the fuzzy inference system were tuned using 

accelerated particle swarm optimisation. The FIS system was restricted to 4 membership function for 

the input and the output, and 16 possible output membership functions. In order to tune the FIS rules 

using the Global Optimisation Tool on MATLAB, the input and the output membership function 

parameters were initially kept constant, and the FIS was allowed to learn the rules using training and 

validation (testing) data obtained from Argonne Laboratory based on the BMW i3 [25]. The data, 

obtained from over 12 different drive cycles (e.g. NEDC, WLTC, US06, UDDS, etc.), was partitioned 

into odd and even-indexed data for testing and training. Once the rules have been learnt, then the 

parameters of the membership functions and the rule bases be optimised using accelerated PSO. 

Parallel computing, as well as the limited FIS logic rule parameters, allows the optimisation algorithm 

(Equation 13) 

(Equation 14) 
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to converge relatively quicker during the rule training. The training error can be minimised by increasing 

the number of iterations, however; this may cause an increase in validation error due to over-tuned 

parameters. The PSO optimisation process of the fuzzy logic is shown in figure 5, similarly this process 

was repeated with Genetic Algorithm, Simulated Annealing and finally PSO-PS, whereby PSO is used 

for rule training and then pattern search (PS), a local optimisation algorithm, for membership function 

tuning. The fuzzy logic system was then exported and interfaced to the EMS module in the 

Simulink/MATLAB environment. 

 

 

(a) 

 
(b) 

 

 
 

Figure 5: (a) Fuzzy Logic Controller (FLC) Schematic (b) Optimisation of Fuzzy Inference System 
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3. Results and discussion 

 

3.1.  Performance validation of optimisation algorithm 

The results of the cost function can be compared, by analysing the RMSE of the membership functions 

(MF) with constant parameters and the RMSE cost function with optimised parameters, to validate the 

performance of the optimised fuzzy inference system, this is shown in table 1.  

Table 3: Results of the cost function for the different optimisation algorithm implemented on FLC.  

Fuzzy Logic MF Criteria PSO PSO-PS GA 

Number of Rule Bases 13 13 12 

RMSE for strategy with non-

optimised MF 
2.54 2.54 2.55 

RMSE for strategy with 

optimised MF 
2.36 2.45 2.43 

Reduction (%) 7% 4% 5% 

 

The table shows the PSO has the best performance, with the highest reduction in RMSE value. 

Simulated Annealing utilises a probability of acceptance as the objective function therefore cannot be 

compared with PSO and GA. In order to limit the number of iterations PSO, PSO-PS and GA were 

limited to 100 iterations, and SA was limited to 200 iterations. These iteration values were obtained 

through trial and error. It was found that PSO and GA tend to converge before the maximum iteration 

limit was reached.  

 

Figure 6: Surfaces of (a) custom FIS (b) PSO FIS and the PSO-PS FIS 

 

Figure 6 shows a graphical relationship between the SoC, engine RPM and the output power 

requirement. It is evident from figure 6(a) that the custom FL’s engine is switched on earlier than the 

PSO-FL and PSO-PS FL relationship. Additionally, the optimal FLCs show that the engine should be 

working at a lower RPM, when the SoC is around 20%, demonstrated by the sharp rise in the surface. 

Another interesting observation is that the engine RPM is relative low, when the power requirement is 

between 25 and 50 kW, suggesting that during this section the EGU is less efficient. Finally a narrow 

peak can be observed in both figure 6(b) and 6(c), when the SoC is low and the power requirement is 
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high, this is to ensure power demand is met at low SoC, preventing the vehicle from suddenly dropping 

in SoC, incapable of maintain a steady SoC. 

3.2. Drive Cycle 

A comparison of the different energy management strategies are compared when run over three 

different drive cycles: NEDC, UDDS and WLTC, as shown in figure 7. The simulation model was left to 

run multiple cycles, until the SoC reaches 5 %. As expected, the general trend of the SoC shows a 

linear decrease, until the SoC threshold. Therefore the SoC is maintained within the range of 10% to 

25% when the engine-generator unit is recharging the batteries (charge-sustain mode). Due to the 

different power requirement by the different drive cycles, in general the vehicle can complete a certain 

amount of drive cycles; NEDC x 22, UDDS x 25 and WLTC x 8.  

 

Figure 7: Drive cycles (a) NEDC (b) UDDS (c) WLTC 

 

 

The simulation was allowed to run until the SoC reaches 5%, therefore the fuel is expected to reach 0% 

at the end of the simulation. The SoC and fuel consumption of the different energy management 

strategies were recorded for the different drive cycles as shown in figure 7. In figure 8(a), (b) and (c) it 

is evident that the engine-generator unit does not provide any power until the SoC reaches 

approximately 50%. Therefore at this point, the different energy management strategies start to deviate 

(a) (b) 

(c) 
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from one another. Whereby, custom FL refers to the fuzzy logic system with intuitive rules specified in 

table 2 and the membership functions shown in figure 4.  

3.3. SoC and fuel consumption over multiple cycles 

 

 

Figure 8: (a) SoC for NEDC, (b) SoC for UDDS (c) SoC for WLTC  

 

In figure 8(a) and 8(b), the custom FL EMS maintains the SoC at a higher threshold compared to the 

other systems. In figure 8(b), an observation can be made that the charging and discharging rate around 

the threshold SoC varies between the different strategies. WLTC drive cycle caused the PSO, PSO-

PS, GA and the SA FL EMS to end before the fuel reached 0%, as shown in figure 9, this suggests that 

the power demand of the motor could not be met by the engine-generator’s power output, resulting in 

the inability to maintain the battery’s SoC. This may be due to the rapid changes in the velocity of the 

WLTC drive cycle, and a high maximum velocity compared to UDDS and NEDC, therefore requiring 

higher peaks of power. Figure 9, the fuel consumption for the NEDC and UDDS cycle, show that the 

drive cycle is a significant factor contributing to the fuel efficiency, therefore introducing drive cycle 

prediction into the EMS may lead to a more efficient system. 

(a) (b) 

(c) 
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Figure 9:  Fuel consumption of multiple cycles of WLTC NEDC and UDDS  

 

 

3.4. Range and system efficiency  

The distance travelled with a full fuel tank, the fuel economy and the system efficiency is summarised 

in table 4. The fuel economy was calculated as the litres of fuel per 100 km, therefore can be compared 

with the different energy management strategies. The system efficiency is the ratio of the energy output 

(motor) over the total energy (regenerative brakes, engine-generator, motor and battery).  

  

UDDS X 22 NEDC X 25 WLTC X 8 
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Table 4: Summary of total distance travelled, fuel economy and system efficiency for all three drive 

cycles 

Energy 

Management 

Strategy 

Distance Travelled  

(km) 

Fuel Economy 

 (L/100 km) 

Ave System Efficiency 

(%) 

NEDC UDDS WLTC NEDC UDDS WLTC NEDC UDDS WLTC 

PHEV 
model 

241.02 297.38 172.37 21.69 26.76 15.51 60.77 61.74 50.98 

Custom FL 241.24 298.01 174.80 21.71 26.82 15.73 61.94 62.48 50.77 

PSO-PS FL 242.44 300.05 184.74 21.82 27.00 16.63 63.30 66.04 53.77 

PSO FL 249.43 297.48 207.63 22.45 26.77 18.69 66.18 63.13 55.92 

GA FL 241.68 297.75 184.73 21.75 26.80 16.63 61.03 62.47 54.28 

SA FL 241.44 297.84 171.50 21.73 26.81 15.43 59.49 61.42 51.69 

 

 

 

Table 5: Change in distance and system efficiency for NEDC drive cycle only 

Energy Management Strategy 
Change in Fuel Economy (%) 

compared to PHEV model 

Change in ave. system efficiency 

(%) compared to PHEV model 

Custom FL -0.09% 1.91% 

PSO-PS FL -0.59% 4.16% 

PSO FL -3.49% 8.90% 

GA FL -0.27% 0.43% 

SA FL -0.17% -2.11% 

 

 

For the NEDC drive cycle, the PSO FL energy management strategy has the highest range, 

shown in table 4, for the same amount of fuel. Table 5 shows that the PSO-FL energy management 

strategy compared to the original energy management system model, will reduce the distance by 

4.88%, and increase the system efficiency by 8.9%, the highest increase in system efficiency. However, 

in table 6, PSO FL yielded the lowest increase in range, compared to the original EMS, of -0.03%. 

Furthermore, it is also evident in table 4 that for the UDDS drive cycle the PSO-PS FLC, has the greatest 

distance travelled and fuel economy. Table 6 shows that the UDDS increases the system efficiency by 

6.97%, which is significantly higher than the PSO FLC. This analysis suggests that using pattern search 

for local optimisation of membership functions, may outperform PSO, in certain drive conditions. 

Therefore, to further increase efficiency, the EMS may require to switch between different FLCs in real-

time based on power requirement prediction.  
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Table 6: Change in distance and system efficiency for UDDS drive cycle only 

Energy Management Strategy 
Change in Fuel Economy (%) 

compared to PHEV model 

Change in ave. system efficiency 

(%) compared to PHEV model 

Custom FL -0.21% 1.21% 

PSO-PS FL -0.90% 6.97% 

PSO FL -0.03% 2.25% 

GA FL -0.13% 1.18% 

SA FL -0.16% -0.51% 

 

GA and SA performed relatively poor, with SA achieving a lower system efficiency than the original 

EMS, this is expected as SA is a better candidate for local searches due to its dependence on a 

probability function [17]. The custom FLC’s performance was reasonable, yielding a higher system 

efficiency than the original EMS, suggesting that the intuitive rules shown in table 2 are valid in achieving 

a higher fuel efficiency, as well as validating the use the of fuzzy logic compared to the modelled EMS. 

It is important to note that tables 4, 5 and 6 show the average system efficiency, which does not indicate 

the system’s performance for a particular instance. An improvement of the study, would be to categorise 

different drive cycle local behaviours based on different levels of power consumptions and evaluate the 

best FL strategy for the specific cases. 

3.5. Power analysis 

Figure 10 shows the simulated power demand, battery and engine power when following the NEDC 

drive cycle. The graphs compare the original EMS with the PSO-FL EMS. The power demand, shown 

in figure 10(a) and 10(b), is approximately the same, with the average value deviating by 3.9%. The 

individual peaks represent the higher power required at higher velocity, hence the number of peaks 

represent the cycle number. The negative battery power indicates the battery recharging via 

regenerative braking and the engine-generator unit. In figure 10(c) and 10(d), the engine-generator unit 

(EGU) recharging can be seen clearly, with the mean battery power shifting towards the negative 

quadrant of the graph. There is a 6% decrease in the average battery power of the PSO FL strategy. 

As excepted, this change occurs when the engine generator unit switches on, as shown in figure 10(e) 

and 10(f). Both the original EMS and PSO-FL EMS start the EGU at the same time, however the peak 

power and intervals vary significantly. The PSO-FL strategy indicates a decrease in the average engine 

power, however the engine-generator runs for a longer time. Additionally, it is evident that the EGU 

works at higher peak power, but at shorter intervals, for the PSO FL strategy, compared to the varied 

dual threshold engine power strategy used by the original EMS model. This change in EGU power 

provides a higher fuel economy and higher system efficiency as depicted in table 5.  
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Figure 10: (a) Original model power demand (b) PSO FL power demand (c) original model battery 

power (d) PSO FL battery power (e) original model engine power (d) PSO FL engine power 

  

(a) PHEV model  (b) PSO-FL  

(e) PHEV model (f) PSO-FL 

(c) PHEV model  (d) PSO-FL  
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3.6. Limitations  

The training data for the optimisation algorithms, from Argonne Laboratory, were chosen based on 10 

drive cycles, and the corresponding vehicle parameters (SoC, engine RPM, battery data, etc.), therefore 

the data may have been skewed towards those specific data, hence may not result in the optimal 

membership functions and fuzzy logic controller. Additionally no engine torque data were provided by 

Argonne Laboratory, which could have provided information on the EGU power efficiency and fuel 

economy. Additionally, the data obtained for this case study were limited to a single drive cycle, and 

therefore it is difficult to predict the BMW’s engine, battery and motor performances over multiple drive 

cycles. Due to the restricted computation power, no measures were employed to systematically obtain 

the number of iterations for the PSO algorithm, and therefore the algorithm may be partially over-tuned 

to the training data.  

 

4. Conclusion 

 

An intelligent energy management strategy for plug-in hybrid electric vehicle has been proposed, with 

a focus on developing optimal power management using a fuzzy logic controller, and evaluating 

accelerated particle swarm optimisation for tuning the fuzzy logic threshold functions and rule bases. 

The following conclusions can be drawn from this study: 

 Incorporating fuzzy logic strategy into the EMS improves the system efficiency by 1.21% for 

UDDS drive cycles, by 1.91% for NEDC drive cycles, and by 9.7% for WLTC.  

 PSO FL strategy improves the range of the vehicle for the NEDC drive cycle by 3.49 % and the 

system efficiency by 8.9 %. 

 PSO for the fuzzy rule optimisation performed better than the intuitive non-optimised fuzzy 

rules, as well as, outperforming the GA tuned rule base and SA tuned rule base. 

 The offline optimisation using the training data can be improved in the real world by replacing 

the training data with samples of data obtained by “common journeys” performed by the vehicle, 

therefore improving the fuel efficiency over time. 

 The system efficiency varies between different drive cycles, therefore the power management 

strategy can be improved by developing an approach for predicting the drive cycle power 

requirement. 

 The study can be further improved by conducting an experiment with the BMW i3 to examine 

its performance over multiple cycles, therefore achieving a refined and more precise model. 
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